Компьютеры с современный мир

1 какую логическую структуру имеют жесткие диски. Устройство и принцип работы жесткого диска

Информация в винчестер записывается и хранится на магнитных дисках. Винчестер содержит обычно от 2 до 11 и более дисков. Все магнитные диски имеют две рабочие поверхности, которые размечены на дорожки и секторы (Рисунок3). Предварительная разметка дисков винчестера выполняется предприятием изготовителем методом форматирования низким уровнем.

Рисунок 3.Разметка рабочих поверхностей на дорожки и секторы.

Цилиндр жесткого диска - это несколько равноудаленных от центра вращения магнитного диска дорожек, расположенных на разных дисковых поверхностях друг над другом (Рисунок 4).

Головки, записывающие и считывающие информацию, всегда читают информацию с одного из цилиндров - несколько головок читают или пишут информацию на равноудаленных от центра секторах пластин т.к. они насажены на общую ось.

Поэтому такая зона называется цилиндром - ведь круговые одновременно используемые дорожки лежат на поверхности воображаемого цилиндра. Обнулить цилиндры нельзя, т.к. они воображаемые. Можно только полностью очистить жесткий диск путем полного форматирования.

Рисунок 4.

Дорожка - это одно "кольцо" данных на одной поверхности диска. Длина дорожки увеличивается от центра к наружному краю диска, однако она слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100кБ и хранить небольшие файлы на таком пространстве неразумно. Поэтому дорожки на диске разбивают на фиксированные отрезки, называемые секторами (sector).

Количество секторов в зависимости от плотности дорожек и типа накопителя может быть разным. Так, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Обычно емкость сектора равна 512 байт. В начале каждого сектора записывается его заголовок (префикс-prefix portion), по которому определяется начало и номер сектора. В конце каждого сектора записывается заключение (суффикс-suffix portion) содержащее контрольную сумму(checksum) для проверки целостности данных. Префикс и суффикс-это необходимая служебная информация, которая записывается при форматировании, данные располагаются между ними.

Жесткий диск как любое блочное устройство хранит информацию фиксированными порциями, называемыми блоками (кластерами).

Сектор - это минимальная физическая единица диска, а кластер - минимальная логическая единица диска. Кластер является наименьшей порцией данных и имеет свой уникальный адрес состоящий из трех цифр: первая - это цилиндр, вторая - это головка, третья - это сектор (cylinder, head, sector). Нумерация секторов начинается с единицы, а нумерация цилиндров (дорожек) и головок с нуля.

Обмен информацией жестким диском с другими устройствами происходит указанием адреса кластера информации в качестве параметра команды, выдаваемой контроллеру. Такой способ адресации обозначается аббревиатурой CHS (Cylinder, Head, Sector), но в связи с ограниченными возможностями BIOS появился другой способ адресации LBA (logical block addressing). Блок на магнитном диске стали описывать одним параметром - линейным адресом блока, который однозначно связан с его CHS адресом и транслируется в BIOS по формуле lba = (cyl*HEADS + head)*SECTORS + (sector-1). Дальнейшее увеличение объемов жестких дисков привело к разработчике совершенно новый расширенного интерфейса BIOS , несовместимого со старыми операционными системами (например DOS, который не поддерживает диски обьемом более 8 GB). Современные системы вообще не пользуются BIOS, а используют собственные драйвера для работы с диском.

Подготовка винчестера к логически рабочему состоянию выполняется в три этапа:

1.Форматирование низкого уровня (физическое).

2.Создание разделов на диске.

3.Форматирование высокого уровня.

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется специальными тестовыми наборами данных.

Количество секторов на дорожке жесткого диска зависит от интерфейса накопителя и контроллера. Практически все винчестеры IDE и SCSI используют так называемую зонную запись с переменным количеством секторов на дорожке. Внешние дорожки дисков более длинные и содержат большее число секторов, чем близкие к центру.

Использование зонной записи приводит к разбиению внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами, а следовательно и к увеличению полезной емкости дисков на 20-50%.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более (см. рисунок 5)

Рисунок 5.

Метод зонной записи был принят производителями жестких дисков, что позволило повысить емкость устройств на 20-50% по сравнению с накопителями, в которых число секторов на дорожке является фиксированным. Сегодня зонная запись используется почти во всех накопителях IDE и SCSI.

На следующем этапе выполняется разбивка диска или создание логических разделов (partitions) в каждой из которых можно создать любую файловую систему соответствующую определенной операционной системе.

На практике применяются три основные файловые системы:

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х и Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов). Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT). Доступна только в операционной системе Windows NT/2000/XP. Длина имен файлов может достигать 256 символов, а размер раздела (теоретически) - 16 Эбайт (16?1018 байт).

NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, такие как администрирование, средства безопасности и др.

До появления Windows XP наиболее распространенной файловой системой была FAT32. В современных системах более широко используется NTFS, которая появилась с файловой системой XP.

Система FAT поддерживается практически каждой операционной системой, что делает ее универсальной для использования в смешанных операционных средах.

FAT32 и NTFS предоставляют дополнительные возможности, но не являются универсально совместимыми с другими операционными системами.

После создания разделов необходимо выполнить форматирование высокого уровняс помощью средств операционной системы.

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector - VBS), две копии таблицы размещения файлов (FAT) и корневой каталог (Root Directory).

С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и игнорирует дефектные участки диска.

В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.

Внешние жесткие диски

Самый простой способ увеличить свободное дисковое пространство состоит в подключении внешнего жесткого диска. Добавленный внешний жесткий диск не сможет играть роль основного диска, на который устанавливается ОС Windows, но он может быть использован как дополнительный диск, предназначенный для хранения программ и файлов. Добавление внешнего жесткого диска - хороший способ выделить дополнительное пространство для хранения цифровых фотографий, видео, музыки и других файлов, занимающих много места на диске.

Чтобы установить внешний жесткий диск, нужно просто подключить его к компьютеру и подсоединить шнур питания. Большинство внешних жестких дисков подключаются к USB-порту, но некоторые используют порт Firewire (также известный как IEEE 1394) или внешний порт Serial ATA (eSATA). Дополнительные сведения см. в документации к этому внешнему жесткому диску. Может также потребоваться установить программное обеспечение, поставляемое вместе с жестким диском.

Большинство внешних жестких дисков можно установить просто путем подключения их к USB-порту.

Внутренние жесткие диски

Внутренние жесткие диски подключаются к системной плате компьютера с помощью интерфейса IDE или SATA. Большинство современных жестких дисков поставляются с кабелем подключения IDE или SATA, в зависимости от типа диска.

Установка внутреннего жесткого диска более трудоемка, особенно если новый жесткий диск планируется использовать в качестве основного для установки Windows. При установке внутреннего жесткого диска придется открыть корпус компьютера и подключить кабели.

В большинстве настольных компьютеров предусмотрены гнезда для установки двух внутренних жестких дисков. В ноутбуках возможна установка только одного жесткого диска. В отличие от добавления дополнительного жесткого диска, при замене основного жесткого диска после его подключения потребуется установить Windows.

Интерфейсы HDD

Parallel ATA (PATA, IDE) – интерфейс, который был специально разработан для домашних систем, он поддерживает не более 4-х устройств. На данный момент актуальны следующие спецификации: UDMA(ATA)-33, UDMA(ATA)-66, UDMA(ATA)-100, UDMA(ATA)-133 (различаются между собой набором команд и пиковой пропускной способностью). Нужно выбирать HDD одного из двух последних стандартов, так как первые два уже неактуальны, и их поддержка реализуется разработчиками в последнюю очередь.

Рисунок -IDE

Serial ATA (SATA) – интерфейс, который появился относительно недавно и сейчас пропагандируется как замена PATA. В отличие от PATA, здесь винчестер подключается узким кабелем и поддерживается «горячее» подключение. Интерфейс обладает большим запасом увеличения скорости, поддерживает команды оптимизации чтения данных. Накопитель подключается к контроллеру собственным кабелем. Этот стандарт еще не получил столь большого распространения, как PATA, из-за своей новизны.

Рисунок - Sata

SCSI – интерфейс, который изначально проектировался для работы с большими объемами данных (7-15 устройств). Он поддерживает большое количество подключенных устройств (точная цифра зависит от версии), современные версии интерфейса поддерживают «горячее» подключение, устройства имеют высокую надежность и высокую скорость передачи данных. Главный недостаток – это цена таких HDD. Они применяются в серверах и для работы с громадными объемами данных.

Рисунок - Scsi

USB - последовательный интерфейс передачи данных, для подключения 2,5 -дюймовых внешних жестких дисков используют Y-образный(2-х портовый) USB-кабель. Для питания 3,5-дюймовых моделей с большим энергопотреблением используют внешний блок питания.

eSATA (External SATA) - интерфейс подключения внешних устройств, поддерживается режим «горячей замены» пропускная способность интерфейса до 80 Мб/сек

Рисунок - eSata

FireWire -стандарт IEEE 1394, последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. устройства равноправны, горячая замена возможна

Рисунок - 1394


Похожая информация.


Любой жесткий диск имеет в своем составе: пластину (блин, зеркало) покрытую тонким слоем магнитного материала, блок головок (БМГ), механизм, обеспечивающий высокоточную установку головок на нужный сектор, корпус и плату микроконтроллера. Зеркальный блин (их может быть и несколько), на котором хранятся данные, закреплен на вращающемся шпинделе. Головки всегда работают в паре – считывающая и записывающая. Позиционирующее устройство отвечает за расположение БМГ относительно поверхности магнитной пластины. Корпус фиксирует все перечисленные выше элементы и надежно защищает их от физического воздействия извне. Плата электроники, на которой размещен микроконтроллер, реализует функции управления работой всех систем жесткого диска и отвечает за двустороннюю транспортировку информации.

Геометрия жестких дисков

Пластины винчестера могут быть отлиты из легких металлических сплавов или керамики. Каждая плоскость блина (или рабочая поверхность) покрывается специальным магнитным веществом, благодаря которому данные сохраняются на диске, и полируется до зеркального блеска. Состав феромагнитного материала каждого слоя покрытия (слоев, как правило, несколько) не одинаков и является технологическим секретом. В непосредственной близости от каждой рабочей поверхности расположены магнитные головки. Для увеличения производительности HDD они всегда работают попарно, одна на чтение, другая на запись.

При форматировании на зеркало наносится концентрическая насечка, образую своеобразные кольцевые зоны, которые называют дорожками. Для удобства работы каждую дорожку исходящими от центра пластины радиусами разделяют на сектора (кластеры). Любой кластер состоит из двух условных сегментов используемых для хранения служебной информации и непосредственно данных пользователя. Содержание служебного сегмента формируется единожды на конвейере завода и не перезаписывается впоследствии. Кроме всего прочего, служебный сегмент содержит относительный адрес всего сектора на поверхности пластины. Именно поэтому адресу и происходит обращение к кластеру при операциях чтения или записи.

Кластерный сегмент данных наполнен информацией, необходимой пользователю.

Другими словами в нем хранятся кусочки тех файлов, что владелец накопителя записывает на него. Важно помнить, что сегмент данных каждого сектора не способен перезаписываться частями. Он будет обновлен полностью, даже если размеры копируемого на винчестер файла меньше допустимой области данных кластера.

В случае, когда жесткий диск состоит из нескольких магнитных пластин, специалисты вводят в обиход еще один термин – цилиндр. Этим словом обозначается набор из дорожек, расположенных на разных блинах или соседних рабочих поверхностях одного зеркала и доступных для чтения/записи без изменения положения блока магнитных головок. Если учесть, что позиционирование БМГ происходит не мгновенно, то идеально расположенные кластеры единого файла должны находиться в рамках одного цилиндра.

Изначально каждая дорожка в независимости от своей близости к центру была разбита на фиксированное количество кластеров. Это позволяло контроллеру проводить адресацию сектора, указывая лишь его номер и номер цилиндра, а также ту головку, которой необходимо выполнить операцию. Если проводить аналогию с трехмерной областью, то на пластине была сформирована своеобразная цилиндрическая система координат, где для определения точки в пространстве указывался ее угол (номер сектора), высоту (номер головки) и радиус (номер цилиндра). Продолжив аналогию на декартовую область трех измерений, мы придем к модели многоэтажного дома, каждая квартира в котором похожа на предыдущую и определяется отдельным номером.

Указанное расположение кластеров практически в три раза уменьшало плотность записи на периферийных дорожках, по отношению к внутренним. С учетом этого недостатка была разработана новая форма разметки поверхности, в которой количество кластеров на дорожке возрастает по мере удаления от центра пластины. Такая форма записи информации получила название зонная и позволила почти в два раза повысить количество полезного информационного объема, без увеличения геометрических размеров блина и относительной плотности записи на его поверхности.

Полученную разметку теперь гораздо сложнее представить в декартовой системе координат, поэтому отформатированный подобным образом жесткий диск не всегда корректно определялся BIOSом. Это связано с тем, что не каждый интерфейс способен правильно произвести преобразование кластерной структуры так, чтобы было понятно для микропрограммы материнской платы. Именно по этой причине из обихода вышли, а со временем и совсем забылись несколько дисковых интерфейсов — ST506/412, ESDI и прочие. С вводом новой геометрии разметки только IDE и SCSI не сошли с дистанции.

На самом деле процедура преобразования хаотичной круговой структуры в аккуратную трехмерную модель очень похожа на коварный обман. К примеру, BIOS ограничивает максимальное количество секторов на дорожке цифрой 63, в реалиях кластеров получается значительно больше. Интерфейс обманывает BIOS, представляя тому фальшивую адресную структуру, в которой секторов на дорожке ровно 63. Такая же подмена происходит и с числом головок. Для удобства адресации их количество варьируется в диапазоне от 16 до 255 штук, на самом деле их редко бывает больше 6. При зонной разметке скорость обмена данными мало зависит от близости дорожки к центру пластины, на ее величину в большей степени будет влиять номер цилиндра, в котором расположены кластеры информации.

Если Вам необходимо , то обращайтесь к нам, мы поможем Вам с этой проблемой.

С внутренним устройством жёсткого диска HDD знакомы многие пользователи, включая тех, которым никогда не приходилось вскрывать гермоблок. Благо, это и не нужно, ведь на этот счёт в интернете имеется масса информации. А вот как именно устроена логическая структура диска знают лишь немногие. Физически жёсткий диск HDD представляет собой несколько закрепленных на центральном шпинделе магнитных пластин, имеющих особую «нарезку» , именуемую треками.

Информация считывается и записывается на них в виде нулей и единиц, и в этом есть некая аналогия тому, как музыка записывается на старые виниловые пластинки.

Только вот в случае с жёсткими дисками всё намного сложнее. Как компьютер определяет, в каком месте диска лежит какой файл? Каким образом достигается отказоустойчивость, благодаря которой мы можем переустанавливать операционную систему, не затрагивая пользовательские файлы? Это было бы едва возможно, если бы данные не хранились на диске в упорядоченном виде. Тема логической структуры HDD-диска настолько глубока и обширна, что рассмотреть её в рамках одной статьи не представляется возможным, поэтому сегодня мы коснёмся только двух её самых важных аспектов - адресации и разметки .

Адресация жесткого диска

Поскольку данные записываются на диск в виде некой последовательности байтов, логично было бы предположить, что при поиске нужного файла считывающая головка пробегает диск от начала до конца. На самом деле ничего подобного не происходит , иначе чтение и запись производились бы очень медленно, а нагрузка на диск была бы просто огромной. И так бы оно и было, если бы в компьютерах не использовалась такая полезная штука как адресация.

Первый механизм адресации, который использовался в ранних моделях жёстких дисков назывался CHS , что расшифровывалось как Cylinder, Head, Sector - цилиндр, головка, сектор . Что такое головка и сектор, надеемся, вам понятно. Под цилиндром же нужно понимать совокупность круговых дорожек одинакового радиуса на всех магнитных поверхностях пластин одного накопителя.

По сути, CHS это ничто иное, как трёхмерная система координат, где Cylinder это номер дорожки на поверхности диска, Head - номер считывающей головки, а Sector - номер конкретного сектора. Когда компьютеру нужно было прочитать некий файл, он делал запрос в формате CHS, и считывающая головка переходила как раз в нужный сектор, в котором этот файл был записан.

Очевидный минус технологии CHS заключался в поддержке дисков весьма ограниченного объёма, так как на низком уровне под адресацию изначально выделялось немного памяти. Максимальный объём диска с CHS не мог превышать 508 Мб. Поэтому, когда появились более объёмные диски, возникла нужда в новых механизмах адресации. Последующие механизмы адресации были основаны на CHS и представляли собой его расширенную версию.

Настоящим прорывом стал LBA (Logical block addressing) , не нуждающийся в учёте геометрии жёсткого диска, вместо этого всем секторам от самого первого (нулевого) до самого последнего присваивался свой порядковый номер, служащий идентификатором. При этом под адресацию выделялось гораздо больше памяти. В общем, максимальный объём жёсткого диска, с которым может работать LBA составляет 128 Пиб , что намного больше объёма любых современных дисков, используемых в персональных компьютерах.

Разметка жёсткого диска

С адресацией всё более-менее ясно, теперь давайте перейдём к другому важному понятию - разметке жёсткого диска. Разметка - это разделение общего пространства диска на логические разделы иначе партиции, которые могут быть видны в операционной системе. Зачем вообще нужно такое разделение? Во-первых , это позволяет разграничивать загрузочные, системные и пользовательские файлы, во-вторых , использовать на каждом из разделов свой тип файловой системы, в-третьих - устанавливать на один ПК несколько разных операционных систем.

Существует две основных схемы разбиения на партиции. Самой распространённой является MBR . Называется она так потому, что в первых физических секторах жёсткого диска этого типа размещается особая область, содержащая загрузочный код и таблицу разделов. Эта область ещё именуется главной загрузочной записью, что на английском языке звучит как master boot record или сокращённо MBR.

Эта область диска не является ни одним из логических разделов, и она не доступна для просмотра средствами операционной системы. Загрузочный код передаёт управление компьютером системному разделу, а таблица разделов указывает, где именно начинается и заканчивается тот или иной логический раздел. Основной недостаток MBR заключается в том, что отводимая под него область диска является фиксированной , а это значит, что в него можно записать ограниченное количество информации. В свою очередь это становится следствием других ограничений, а именно:

На MBR-диске нельзя создать более четырёх логических Primary-разделов (ограничение условно снимается посредством создания extended-партиции) .
Каким бы объёмным ни был диск, пользователю будет доступно только 2 Терабайта .

К роме того, схема MBR не отличается надёжностью. Малейшее повреждение кода в этой области приведёт к невозможности загрузки или другим проблемам, при которых записанная на диск информация перестанет определяться.

Менее распространённой, но зато более новой и надёжной схемой является GPT или GUID Partition Table . Если посмотреть на схематическое изображение GPT-диска, то можно увидеть, что его структура очень похожа на структуру диска MBR, но это сходство весьма условное. Приходящаяся на нулевой сектор область называется Protection MBR , и назначение её несколько иное, чем обычной MBR. Служит она для защиты схемы GPT от перезаписи утилитами, которые не понимают GPT. Если такой утилите «показать» GPT-диск, то благодаря Protection MBR она определит его как MBR-диск, на котором отсутствует свободное пространство. Следовательно, перезаписать она его уже не сможет.

В будущем, когда MBR уйдёт в прошлое, возможно, в Protection MBR больше не будет надобности, ведь процесс загрузки с GPT-дисков в EFI происходит несколько иначе. Помимо области Protection MBR, на GPT-дисках имеется другая область, именуемая GUID Partition Entries Array . Это аналог Partition Table в MBR, содержащий список всех партиций на диске GPT. В отличие от MBR, он не имеет жёсткой фиксации, поэтому на GPT-диске можно создавать практически неограниченное количество логических разделов. Ограничения тут могут быть только на уровне операционной системы. Например, Windows не может работать с более чем с 128 партициями.

Другим важным отличием GPT-дисков является резервирование загрузочных данных и сведений о таблице разделов. Если в MBR-дисках они хранятся в одном месте - в первых физических секторах, то в дисках с разметкой GPT они могут храниться где-то ещё, но уже в виде копий. Если основные данные окажутся повреждены, механизм GPT восстановит их из бекапа. В MBR же это привело бы к невозможности загрузки компьютера или «потере» разделов, а вместе с ними и записанных данных.

И наконец, разметка GPT позволяет работать с дисками объёмом больше 2 Тб.

На этом пока всё. В следующий раз мы продолжим знакомится с логической структурой жестких дисков. В частности, вы узнаете, чем отличаются обычные диски от динамических, где последние применяются, а также что представляет собой файловая система.

Как выглядит современный жёсткий диск (HDD) внутри? Как его разобрать на части? Как называются части и какие функции в общем механизме хранения информации выполняют? Ответы на эти и другие вопросы можно узнать здесь, ниже. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жёстких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.


Зелёная закреплённая винтами пластина с проступающим узором дорожек, разъёмами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она выполняет функции электронного управления работой жёсткого диска. Её работу можно сравнить с укладкой в магнитные отпечатки цифровых данных и распознание обратно по первому требованию. Например, как прилежный писарь с текстами на бумаге. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA). В среде специалистов принято называть его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату (понадобиться отвертка «звёздочка» T-6) и изучим размещённые на ней компоненты.


Первым в глаза бросается большой чип, расположенный посередине – Система на кристалле (System On Chip, SOC). В ней можно выделить два крупных составляющих:

  1. Центральный процессор, который производит все вычисления (Central Processor Unit, CPU). Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.
  2. Канал чтения/записи (read/write channel) – устройство, преобразующее поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Так же выполняет слежение за позиционированием головок. Иными словами, создает магнитные образы при записи и распознает их при чтении.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объём памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки (firmware). Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько известно, только производитель HGST указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, о реальном объёме кэша остаётся только гадать. В спецификации ATA составители не стали расширять ограничение, заложенное в ранних версиях, равное 16 мегабайт. Поэтому, программы не могут отобразить объем более максимального.

Следующий чип – контроллер управления шпиндельным двигателем и звуковой катушкой, перемещающий блок головок (Voice Coil Motor and Spindle Motor controller, VCM&SM controller). На жаргоне специалистов – это «крутилка». Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Так же при отключении питания переключает останавливающийся двигатель в режим генерации и полученную энергию подает на звуковую катушку для плавной парковки магнитных головок. Ядро VCM-контроллера может работать даже при температуре в 100°C.

Часть программы управления (прошивки) диска хранится во флэш-памяти (на рисунке обозначено: Flash). При подаче питания на диск микроконтроллер загружает сначала маленькое boot-ПЗУ внутри себя, а дальше переписывает содержимое флэш-чипа в память и приступает к исполнению кода уже из ОЗУ. Без корректно загруженного кода, диск даже не пожелает запускать двигатель. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер. На современных дисках (где-то с 2004 года и новее, однако исключение составляют жёсткие диски Samsung и они же с наклейками от Seagate) flash-память содержит таблицы с кодами настроек механики и головок, которые уникальны для данного гермоблока и не подойдут к другому. Поэтому операция «перекинуть контроллер» всегда заканчивается либо тем, что диск «не определяется в BIOS», либо определяется заводским внутренним названием, но все равно доступ к данным не даёт. Для рассматриваемого диска Seagate 7200.11 утрата оригинального содержимого flash-памяти приводит к полной потере доступа к информации, так как подобрать или угадать настройки не получится (во всяком случае, автору такая методика не известна).

На youtube-канале R.Lab есть несколько примеров перестановки платы с перепайкой микросхемы c неисправной платы на исправную:
PC-3000 HDD Toshiba MK2555GSX PCB change
PC-3000 HDD Samsung HD103SJ PCB change

Датчик удара (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. Ещё при падении может заклинить шпиндельный двигатель, но об этом позже. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшие механические колебания. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено, кроме основного, ещё два дополнительных датчика вибрации. На нашей плате дополнительные датчики не припаяны, но места под них есть - обозначены на рисунке как «Vibration sensor».

На плате имеется ещё одно защитное устройство – ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Электроника для старых дисков была менее интегрированная, и каждая функция была разделена на одну и более микросхем.


Теперь рассмотрим гермоблок.


Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится вакуум. На самом деле это не так. Воздух нужен для аэродинамического взлета головок над поверхностью. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.


Сама крышка не представляет собой ничего интересного. Это просто стальная пластина с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.


Информация хранится на дисках, называемых также «блинами», магнитными поверхностями или пластинами (platters). Данные записываются с двух сторон. Но иногда с одной из сторон головка не установлена, либо физически головка присутствует, но отключена на заводе. На фотографии вы видите верхнюю пластину, соответствующую головке с самым большим номером. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между пластинами, а также над верхней из них, мы видим специальные вставки, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны. Ниже приведен пример модели прохождения потока воздуха внутри гермоблока.


Вид на пластины и сепараторы сбоку.


Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона – это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.


На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.


Парковочная площадка накопителя Western Digital 3.5”

В случае парковки головок внутри пластин для съёма блока магнитных головок нужен специальный инструмент, без него снять БМГ очень сложно без повреждения. Для внешней парковки можно вставить между головками пластиковые трубочки, подходящие по размеру, и вынуть блок. Хотя, и для этого случая так же есть съемники, но они более простой конструкции.

Жёсткий диск – механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин


Теперь снимем верхний магнит и посмотрим, что скрывается под ним.


В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом – удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача – ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жёстких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.


Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) – устройство, которое перемещает головки.

Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Он бывает двух типов: магнитный и воздушный (air lock). Магнитный работает как простая магнитная защёлка. Высвобождение осуществляется подачей электрического импульса. Воздушная защёлка освобождает БМГ после того, как шпиндельный двигатель наберёт достаточное число оборотов, чтобы давление воздуха отодвинуло фиксатор с пути звуковой катушки. Фиксатор защищает головки от вылета головок в рабочую область. Если по какой-то причине фиксатор со своей функцией не справился (диск уронили или ударили во включенном состоянии), то головки прилипнут к поверхности. Для дисков 3.5“ последующее включение из-за большей мощности мотора просто оторвет головки. А вот у 2.5“ мощность мотора меньше и шансы восстановить данные, высвободив «из плена» родные головки, довольно высоки.

Теперь снимем блок магнитных головок.


Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.


Подшипник.


На следующей фотографии изображены контакты БМГ.


Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для предотвращения окисления. А вот со стороны платы электроники окисление случается частенько, что приводит к неисправности HDD. Удалить окисление с контактов можно стирательной резинкой (eraser).


Это классическая конструкция коромысла.


Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки – это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью магнитных дисков. На современных жёстких дисках головки двигаются на расстоянии 5-10 нанометров от поверхности. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Ещё попадание пыли может вызвать царапины. От них образуются новые пылинки, но уже магнитные, которые прилипают к магнитному диску и вызывают новые царапины. Это приводит к тому, что диск быстро покрывается царапинами или на жаргоне «запиливается». В таком состоянии ни тонкий магнитный слой, ни магнитные головки уже не работают, и жёсткий диск стучит (клик смерти).

Сами считывающие и записывающие элементы головки находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп. Ниже приведен пример фотографии (справа) через микроскоп и схематическое изображение (слева) взаимного расположения пишущего и читающего элементов головки.


Рассмотрим поверхность слайдера поближе.


Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.


Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель – это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.


Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту более 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления. Установить же усилитель прямо на голове нельзя, так как она существенно нагревается во время работы, что делает не возможным работу полупроводникового усилителя, вакуумно-ламповых усилителей таких малых размеров ещё не придумали.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.


На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.


Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).


Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).


Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.


Теперь понятно, за счёт чего создается пространство для головок – между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо – высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.


Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.


Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха. Однако, если жёсткий диск поместить в воду, то она наберется внутрь через фильтр! И это совсем не означает, что попавшая внутрь вода будет чистая. На магнитных поверхностях кристаллизуются соли и наждачка вместо пластин обеспечена.

Немного подробнее про шпиндельный двигатель. Схематически его конструкция показана на рисунке.


Внутри spindle hub закреплен постоянный магнит. Обмотки статора, меняя магнитное поле, заставляют ротор вращаться.


Моторы бывают двух видов, с шариковыми подшипниками и с гидродинамическими (Fluid Dynamic Bearing, FDB). Шариковые перестали использовать более 10 лет назад. Это связано с тем, что у них биение высокое. В гидродинамическом подшипнике биения намного ниже и работает он значительно тише. Но есть и пару минусов. Во-первых, он может заклинить. С шариковыми такого явления не происходило. Шариковые подшипники если и выходили из строя, то начинали громко шуметь, но информация хоть медленно, но читалась. Сейчас же, в случае клина подшипника, нужно при помощи специального инструмента снять все диски и установить их на исправный шпиндельный двигатель. Операция очень сложная и редко приводит к удачному восстановлению данных. Клин может возникнуть от резкого изменения положения за счет большого значения силы Кориолиса, действующей на ось и приводящей к ее сгибанию. Например, есть внешние 3.5” диски в коробочке. Стояла коробочка вертикально, задели, упала горизонтально. Казалось бы, не далеко улетел то?! А нет - клин двигателя, и никакой информации уже не достать.

Во-вторых, из гидродинамического подшипника может вытечь смазка (она там жидкая, ее довольно много, в отличие от смазки-геля, используемой шариковых), и попасть на магнитные пластины. Чтобы предотвратить попадание смазки на магнитные поверхности используют смазку с частицами, имеющими магнитные свойства и улавливающими их магнитные ловушки. Еще используют вокруг места возможной протечки абсорбционное кольцо. Вытеканию способствует перегрев диска, поэтому важно следить за температурным режимом эксплуатации.


Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.


Обновление 2018, Сергей Яценко

Перепечатка или цитирование разрешены при условии сохранения ссылки на перво

Здравствуйте уважаемые читатели, недавно я писал статью про , новые и старые, а так же помог выбрать подходящую для вас. Но осталось много непонятных понятий, для полного понятия статьи такие как сектор , кластер , вообще и в этой статье я постараюсь вам разъяснить что это такое. А так же о новом секторе большего объема, дает ли он производительность или же опять провал изобретения? Даже если вы знаете это все, не поленитесь прочтите вдруг узнаете что-то новое и вообще оцените мой труд 🙂

Какая же структура жесткого диска

Структура жесткого диска на внешний взгляд достаточна проста, только углубившись можно столкнутся с какими-нибудь трудностями. Но не пугайте начнем с самого начала.

Жесткий диск как и другие магнитные накопители хранят память в дорожкообразной структуре. Следовательно магнитный диск разбит на кольца разного диаметра начиная с внешнего края. Кольца называемые дорожками состоят из кластеров и секторов . Количество дорожек и секторов определяется форматов диска . А формат диска задается при его изготовлении, так что этот параметр изменить нельзя т.е. если размер сектора при изготовлении 512 байт, то с этим ничего уже не поделать. Дорожка разбивается на равные секторы которые обычно занимают 512 байт (о новых чуть ниже). Как раз процесс разбития диска на секторы, называется форматированием . И уже в кластерах хранится информация.

Сектор — это минимальная единица хранения информации на дисковых носителях. Стандартный размер кластера обычно был 512 байт, но сейчас уже существует новый размер в 4 кб, который тоже имеет ряд интересных своих свойств , о которых мы поговорим чуть ниже.

В секторе записывается его заголовок (prefix portion), где хранится начало и конец сектора , а в конце - заключение (suffix portion), в котором содержится контрольная сумма (checksum), нужная для проверки целостности данных. При форматировании в секторе записывается их номера и служебная информация позволяющая определить начало и конец сектора. А так же то что помогает определить форматированную или не отформатированную область диска. По этому из-за служебной информации емкость диска после форматирования немного меньше. На самом деле хоть и говорят что размер сектора 512 байт, но это только объем информации, а сам размер его составляет 571 байт.

К ластер — это единица хранения данных на диске в объединенная в один или несколько секторов. Например если диск имеет сектор размером в 512 байт, то кластер размером в 512 байт содержит один сектор. А если кластер имеет размер 2 КБ, то он имеет четыре сектора. Размер кластера зависит от определенных условий, о который я уже писал .

Размер кластера узнать очень просто, для этого достаточно создать текстовый файл и напишите в нем любое слово или даже поставьте одну букву или цифру сохраните и выберите свойство этого файла. В пункте размер на диске будет ваш размер кластера. Главное чтобы файл весил менее 512 байт. Она буква обычно весит 1 байт.

Вся информация хранится в системном хранилище и хранилище данных .

Системная область диска состоит из

  1. Загрузочная запись (MBR) , состоящая из системного загрузчика и информационный блок определяющих формат диска.
  2. о которой я уже писал.
  3. Корневой каталог , где находится информация о каждом файле (время создания, изменения, размер и т.д.).

Физическая структура жестких дисков

Состоит из нескольких магнитных дисков и каждый диск разбит на большое количество дорожек с каждой стороны. Основной оценкой жесткого диска является его поверхностная плотность записи определяется по формуле Мбит/дюйм2 и Гбит/дюйм2. В настоящее время плотность дисков достигает 740 Гбит/дюйм2. Специалисты IHS предполагают к 2016 году достичь плотности 1800 Гбит на 1 кв. дюйм!

Для достижения более большей поверхностной плотности необходимо чтобы расстояние между головкой и диском было минимальное.

Диск покрыт тонким слоем вещества независимо от его материала, которое не дает размагничиваться от воздействия внешнего магнитного поля.

Существует два типа слоя:

1. оксидный

2. тонкопленочный.

Оксидный слой образуется в результате разбрызгивания оксида железа в полимерном растворе. Ну если это не интересно, процесс образования можно пропустить 🙂 А кому интересно продолжим. Получается химическая смесь которая растекается от центра к внешнему краю жесткого диска. Потом диск полируется, затем наносится следующий чистого полимера слой и потом окончательно шлифуется. Чтобы добиться большего объема жесткого диска необходимо чтобы слой был более гладким и тонким. По этому сейчас используют следующий способ.

Тонкопленочный слой более тонкий, прочный и качество намного выше. Благодаря этому способу удалось уменьшить зазор между дисками и следовательно достичь больших объемов.

Этот способ получают путем электролиза. Это тоже самое как при шлифовки хромированной детали. Подложку жесткого диска погружают в ванну с химическим раствором в следствии чего она покрывается несколькими слоями металлической пленки размером в 3 микродюйма. Сначала в камере химические вещества преобразуются в газообразное состояние, а потом накладываются на подложку. Сначала на алюминиевый диск наносится слой фосфорита никеля, а потом магнитный кобальтовый сплав. Этот способ дает наименьшую величину между головкой и поверхностью дисков всего 0,025 мкм, а раньше 0,076 мкм.

Привод диска

И самый главной деталью в жестком диске является привод головки. Они бывают:

1. C шаговым двигателем

2. C подвижной катушкой.

О них я рассказывать не буду, если интересно можете прочитать , но скажу что с шаговым двигателем приводы самые надежные.

Новый размер сектора в 4 кб, к чему готовится?

Вот мы и подошли к самой интересной теме сегодняшнего дня. Как вы уже поняли что такое сектор , это минимальная единица для хранения информации, но т.к. для настоящего времени 512 байт стало совсем мало, новые технологии продвинули размер в 4 кб. Создатели нового сектора его IDEMA (Международная ассоциация производителей жестких дисков) дали имя Advanced Format (новый формат).

Теперь давайте разберем конкретные причины перехода и какие трудности могут возникнуть с новым сектором (плюсы и минусы его) .

Главная причиной его перехода возникла из-за больших емкостей жесткого диска , для таких объемов размер в 512 байт становится ограничением в создании больших объемов и эффективности исправления ошибок.

Малые сектора занимают меньшую площадь жесткого диска, что создает повышение плотности диска. Из-за этого возникают проблемы в исправлении ошибок и в следствии изнашивается поверхность диска.

В секторах в 512 байт, максимальный объем исправления ошибок составляет 50 байт. Возникают трудности в исправлении и чтобы более эффективно происходил процесс исправления появился новый объем 4 кб.

Благодаря новому объему достигается большая плотность жесткого диска, что должно дать увеличение объемов жестких дисков.

Надежность в исправлении ошибок благодаря тому, что код исправления ошибок увеличен до 100 байт (в отличии от старого 50 байт) и надежность возросла до 97 %.

Н овый формат достиг уменьшение ширины дорожки до 70-80 нм , понизить себестоимость и следовательно снизить стоимость для покупателя. Повысился объем области хранения данных диска, улучшилась производительность (снизить время чтения/записи и доступа, снизился шум, нагрев, механический износ).

Какие трудности нас могут ожидать?

Трудность может ожидать в неподготовленности программного обеспечения, в следствии чего новый сектор может не улучшить характеристики, а наоборот ухудшить! Advanced Format поддерживается начиная с Microsoft Vista с последними обновлениями и более поздними версиями Windows, а также последними выпусками Linux и Mac OS X.

А происходит это из-за того, что программные кластеры не соответствуют друг другу (происходит сдвиг), а так же это касается физических секторов на диске, в следствии чего один кластер перекрывает два сектора, в следствии удваевается число операций чтений/записи, что в конечном случае приводит не только к замедлению работы, но и к большому износу жесткого диска .

Для решения этой ситуации компания Western Digital придумала специальную утилиту WD Align System Utility , благодаря которой производится сдвиг содержимого диска на 1 сектор. А так же специальная, технология Seagate SmartAlign , в дисках Seagate, позволяет использовать технологию нового сектора без специальной утилиты. Western Digital также позволяет сместить блоки переключателем на диске, но возможно проблем с количеством свободных блоков.

Можно так же применять специальные утилиты производителе например одна из них: Paragon Alignment Tool , которые позволяют смещать блоки и не давать падать быстродействию, а наоборот повышать.

Вывод здесь один, наши современные технологии идут все вперед и вперед, новый размер сектора действительно способен повысить быстродействие жесткого диска и системы в целом, но для достижения производительности необходимо внимательно подходить к этой технологии. Перед тем как её применять убедитесь в своем программном обеспечении о наличии поддержки нового формата , чтобы у вас не было трудностей в работе и чтобы Advanced Format принес вам только радость и комфорт! 🙂

Похожие публикации