Компьютеры с современный мир

Балансирующее зарядное. Одновременная зарядка нескольких аккумуляторов

Есть у меня старый шуруповерт, лежал без дела довольно долго, соответственно аккумуляторы приказали долго жить. И вот недавно он мне потребовался, кухню собирать. Если интересно как я его оживил переделкой на литий менее чем за 100 рублей - то добро пожаловать под кат.

Дрель у меня такая - на 18 вольт, 9Н*м


Навскидку мне корячилось три варианта
1. купить новый недорогой шуруповерт рублей за 1500-2500 - просто, быстро, но это не наш метод, тк старая дрель будет лежать мертвым грузом, а выкинуть рука не поднимется,
2. заказать NiCd аккумуляторы - около 900-1200р - а смысл, если новый можно за 1500р взять?
3. переделать на литиевые, а вот тут бюджет может быть разным. Ознакомившись с вопросом на маське выяснил, что для переделки на литий в идеале нужно:
- плата 3S, 4S или 5S в зависимости от размера батареи (мне на 18 вольт дрели надо 5 банок АКБ, соответственно 5S - около 800р)
- желательно плата балансировки (если плата защиты без балансира), особенно желательно если аккумуляторы не новые или из разных партий
- сами Li-ion АКБ, желательно токовые, те расчитанные на высокие токи работы - от 350р за штуку, за 5 шт - от 1700р.
По итогу дороговато выходит для моей дешевой старой дрели (см 1 пункт), поэтому было решено делать свой ультра-бюджетный вариант с блэкджеком балансировкой.
У меня был старый аккумулятор от ноутбука (отдали за так), разобрав который обнаружил в нем такие банки Samsung. За исключением 2 банок остальные были вполне рабочие, зарядил каждую в повер банке


проверил их после зарядки на ток КЗ (не более 1 секунды - это может быть опасно, тк банки без защиты).


Как видно, банки вполне живые - кратковременный ток отдачи по КЗ от 10 до 20А.
Накидал такую схему переделки, по ней и буду делать.


Так как аккумуляторы не токовые для облегчения их работы было решено ставить по 2 акб в параллель (при рабочем токе например в 10А, ток выдаваемый каждым акб будет 10/2=5А). Для этого желательно подобрать пары с похожими характеристиками отдачи по току. Исправляю схему:


В принципе, моя дрель, судя по характеристикам не особо мощная, поэтому в принципе можно было бы и по одной банке ставить, правда проживут они скорее всего меньше, но так как батареи у меня были в количестве 10 штук решил ставить все 10.
Процесс сборки не фотографировал, в принципе там ничего интересного, батареи паять можно к уже приваренным лепесткам не боясь что перегреешь.
Так как все 10 аккумуляторов в старый блок не влезли, получилось немного колхозно


ну ничего, берем синюю (какая была) изоленту и прячем все лишнее -


уже лучше)
Как видите сбоку я вывел зарядно-балансировочный разъем, который выпаял из сломанной видеокарты (или материнской платы, не помню уже). Так как мне надо 10 контактов, пришлось использовать такой db15, если бы аккумуляторов меньше применил бы вот db9 - их найти проще


Осталось спаять зарядное. В качестве источников напряжения 5 вольт взял 5 ненужных зарядок от мобильников, как раз нашел 5 штук, правда все разные, на разный ток от 600 до 900мА. В идеале использовать одинаковые, так зарядка бы происходила примерно одновременно и можно было бы оценивать какие банки долше заряжаются.
Важно! Делать нужно точно по схеме используя на каждый контролер заряда свой отдельный блок питания 5-8В, то есть блоки питания должны быть гальванически развязаны друг от друга. Один мощный блок питания на все контроллеры использовать нельзя - будет короткое замыкание акумуляторов (у TP4056 общий по входу и выходу корпус-минус).
Для уменьшения размеров конструкции вынул зарядные из корпусов. На тыловую сторону приклеил на двухсторониий скотч контроллер заряда TP4056 и убрал конструкцию в отдельный корпус


Вот так выглядит при включении в 220В


Синим светит контроллер заряда - индикация о том что нагрузка не подключена (или акб заряжены), красным и зеленым - светодиоды зарядных от мобильников.
Теперь подключим аккумулятор-


Видно что заряжаются только 3 банки (горит красный диод), а оставшиеся 2 - нет (горит синий диод). Это потому что я его недавно заряжал, и разрядились только 3 из 5 акб. Такм образом, видно что при каждой зарядке происходит балансировка всей батареи - в этом главный плюс этой схемы, особенно это важно при использовании таких поюзанных акб от батареи ноутбука.


Для наглядности снял ролик, возможно что-то упустил в рассказе, то смотрите на видое -


Подведем итоги.
Плюсы
1. Дешево - мне потребовалось купить только контроллеры заряда TP4056, что обошлось мне в 60 рублей за 5 штук, остальное было или достал бесплатно. Сейчас доставка у этого продавца только платная, +еще около 1$, можно найти и дешевле наверное.
2. Балансировка аккумуляторов при каждой зарядке.

Минусы
1. Нет защиты по току, поэтому я не ставлю фиксатор патрона на блокировку (значек сверла) поэтому защита по току чисто механическая - патрон прощелкивается и не блокируется при зажиме, ток кз не возникает. В принципе данной защиты считаю достаточно.
2. Если нет старых зарядок от мобильников, то выйдет немного дороже. Но их можно и у знакомых поспрашивать - наверняка у многих валяются без дела.
3. Нет защиты от переразряда. Ну тут надо смотреть если мощность упала - сразу на зарядку! А вообще это же литий, тут не надо как на никеле ждать когда батарея сядет, а лучше заряжать при возможности - так батареи и прослужат дольше.

В общем данную схему считаю имеющей право на жизнь, особенно для реанимации таких недорогих и не супермощных шуруповертов.
ps в коментах дали

Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.

Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.

Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.

Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.

С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.

Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.

Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.

Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.

Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.

Простой балансир для li-ion аккумуляторов

Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.

Выходом из данной ситуации может быть применение популярного . Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.

Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).

При работе над некоторыми конструкциями питающимися от автономного источника питания, возник вопрос в выборе последних.

На мой взгляд из доступных лучшие LI-ION аккумуляторы, тем более, что у меня есть некое количество незащищенных банок от ноутбуковских батарей. Но с ними возникает уже широко известная проблема - их сложный алгоритм зарядки при несоблюдении которого постоянно не дозаряжен аккумулятор быстро выйдет со строя, а при перезаряде также, но с активным разрушением. Резкий перезаряд наступает при превышении напряжения на заряжаемом элементе на 1-2 сотых вольта от требуемого, проследить такое практически невозможно, поэтому производители рекомендуют автоматические ограничители.

Есть решения и готовые устройства для этих целей как приставки к зарядным устройствам для незащищенных аккумуляторов, так и встраиваемые в аккумулятор.

В общем, для незащищенных аккумуляторов нужен балансир - ограничитель напряжения заряда и защита от чрезмерного разряда. Делать множество мелких девайсов на каждую банку пока нету смысла, решил сделать приставку к зарядному устройству.

Интересное и простое решение нашлось у чехов . Такой себе мощный стабилитрон, срабатывающий при граничном для элемента напряжении. Повторяемость схемы отличная, при заведомо исправных деталях.

Схема одного модуля.

Балансир составлен из трех идентичных независимых модулей и предназначен для зарядки одно элементного аккумулятора, батареи из двух или трех последовательно соединенных банок.

Зарядка одного Li-ION элемента возможна различными напряжениями, балансир здесь служит и как делитель напряжения если зарядное рассчитано на большее количество элементов..

Также и при зарядке двух последовательных элементов от различных напряжений

Заряд батареи из трех элементов. Для 4 и более банок, думаю решение понятно - увеличение количества модулей в схеме.

Вид готового ограничителя, реализуемого фирмой "E-Fly".

То, что получилось у меня. С таким теплоотводом заряжая током до 1-3 ампер соединеных несколько батарей паралельно или при очень большой разницы в емкости элементов по окончании заряда могу не бояться за здоровье транзисторов.

С задранной защитной панелью.

При исполнении без теплоотводов транзисторы смогут выдержать ток до 0.5 А, при больших токах (до 3-х Ампер) нужна хорошая теплоотдача.

Нагрев транзисторов происходит только при достижении аккумулятора граничного напряжения зарядки, когда лишнее напряжение будет гасится сопротивлением открытого транзистора. В этом и заключается принцип защиты от перезаряда. Это очень удобно при зарядке последовательной батареи с неравномерно заряженных элементов. При достижении граничного напряжения элемента, открывается транзистор и основной ток идет мимо аккумулятора, другие аккумуляторы батареи, которые еще не достигли конечного заряда, продолжают заряжаться. Отключенный таким образом аккумулятор продолжает заряжаться очень малым током стабилизированного напряжения (капельный заряд). При срабатывании защиты всех модулей, заряд условно закончен и систему можно отключать, для простого устройства такая работа вполне прилична.

Настройка

Порог срабатывания ограничителя 4.200 вольта, при первоначальной настройке устройства нужно с большой точностью сделать регулировку этого значения.

На устройство без подсоединенных аккумуляторов подается напряжение от источника питания, зарядного устройства с ограничителем тока в пределах 0.15-1А. Напряжение можно подавать как на отдельный модуль 4.5-5 вольт так и на всю схему 13.5-15 вольт, и подстроечным резистором в каждом модуле выставляем порог зажигания светодиода 4.16 вольта, контролируя на выходных клеммах напряжение. Все модули должны быть отрегулированы на один порог с точностью до 0.001 вольта.

Даже новые, но дешевые вольтметры и прочие комбинированные приборы имеют погрешности, это надо учесть. Источник питания использовать стабилизированный с хорошей фильтрацией. Зарядное устройство для которого предназначен этот ограничитель также должно иметь функцию ограничения тока, хороший выходной фильтр и быть рассчитано на напряжение, которое равно суммарному напряжению батареи заряженных аккумуляторов + 1-3 вольта. Если использовать этот девайс в качестве балансира для выравнивания банок планируется с готовым зарядным для аккумуляторов в котором уже автоматически контролируется напряжение полного заряда с последующим отключением, нужно узнать порог этого отключения, и регулировать ограничитель уже под имеющееся зарядное устройство, это может быть 4.10 - 4.19 вольт или типа того.

Я регулировал порог срабатывания так:

Последовательно соединил лабораторный блок питания, автомобильную лампочку 12 вольт 1 ампер в качестве ограничителя тока и сам ограничитель. Подал напряжение 15 вольт и меряя на выходе модуля мультиметром напряжение регулировкой подстроечного добивался показания 4.16 вольта на каждом модуле, так как не имелось под руками точнее прибора, да и блок питания имеет на выходе некую пульсацию напряжения не смотря на все фильтра. Этот блок питания и служит мне зарядным устройством.

Вместо указанных мощных транзисторов можно применить КТ818, цоколевка у них немного иная и без переделки печатной платы их можно установить со стороны дорожек, припаяв как корпуса DPAK или “лицом“ в обратную сторону.

Печатная плата в формате Sprint-layout 6.0 , при печати делать зеркально. Позиционные номера деталей указаны в лае.

Обычно в любой системе, состоящей из нескольких последовательно включенных батарей, возникает проблема разбалансировки заряда отдельных батарей. Выравнивание заряда - это метод проектирования, позволяющий увеличить безопасность эксплуатации батарей, время работы без подзарядки и срок службы.Новейшие микросхемы защиты батарей и указатели заряда компании Texas Instruments - BQ2084, семейства BQ20ZXX, BQ77PL900 и BQ78PL114, представленные в производственной линейке компании, - необходимы для реализации этого метода.

ЧТО ТАКОЕ РАЗБАЛАНСИРОВКА БАТАРЕЙ?

Перегрев или перезаряд ускоряют износ батареи и могут вызвать воспламенение или даже взрыв. Программно-аппаратные средства защиты уменьшают опасность. В блоке из многих батарей, включенных последовательно (обычно такие блоки применяются в лаптопах и медицинском оборудовании) существует возможность разбалансировки батарей, что ведет к их медленной, но неуклонной деградации.
Не существует двух одинаковых батарей, всегда есть небольшие отличия в состоянии заряда батарей (СЗБ), саморазряда, емкости, сопротивлении и температурных характеристиках, даже если речь идет о батареях одинаковых типов, от одного производителя и даже из одной производственной партии. При формировании блока из нескольких батарей производитель обычно подбирает схожие по СЗБ батареи посредством сравнения напряжений на них. Однако отличия в параметрах отдельных батарей все равно остаются, а со временем могут и возрасти. Большинство зарядных устройств определяет полный заряд по суммарному напряжению всей цепочки последовательно включенных батарей. Поэтому напряжение заряда отдельных батарей может варьироваться в широких пределах, но не превышать порогового значения напряжения, при котором включается защита от перезаряда. Однако в слабом звене - батарее с малой емкостью или большим внутренним сопротивлением напряжение может быть выше, чем на остальных полностью заряженных батареях. Дефектность такой батареи проявится позже при длительном цикле разряда. Высокое напряжение такой батареи после завершения заряда свидетельствует об ее ускоренной деградации. При разряде по тем же причинам (большое внутренне сопротивление и малая емкость) на этой батарее будет наименьшее напряжение. Сказанное означает, что при заряде на слабой батарее может сработать защита от перенапряжения, в то время как остальные батареи блока еще не будут заряжены полностью. Это приведет к недоиспользованию ресурсов батарей.

МЕТОДЫ БАЛАНСИРОВКИ

Разбалансировка батарей оказывает существенное нежелательное воздействие на время работы без подзарядки и срок службы. Выравнивание напряжения и СЗБ батарей лучше всего производить при их полном заряде. Существуют два метода балансировки батарей - активный и пассивный. Последний иногда называют «резисторной балансировкой». Пассивный метод довольно прост: разряд батарей, нуждающихся в балансировке, производят через байпасные цепи, рассеивающие мощность. Эти байпасные цепочки могут быть интегрированы в батарейный блок или помещаться во внешней микросхеме. Такой метод предпочтительно использовать в недорогих приложениях. Практически вся избыточная энергия от батарей с большим зарядом рассеивается в виде тепла - это главный недостаток пассивного метода, т.к. он сокращает время работы батарей без подзарядки. В активном методе балансировки для передачи энергии от батарей с большим зарядом к менее заряженным батареям используются индуктивности или емкости, потери энергии в которых незначительны. Поэтому активный метод существенно более эффективен, нежели пассивный. Конечно, за повышение эффективности приходится платить - использовать дополнительные относительно дорогостоящие компоненты.

ПАССИВНЫЙ МЕТОД БАЛАНСИРОВКИ

Наиболее простое решение - выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивающая защиту батарейных блоков с 5-10 последовательно включенными батареями, используется в инструментах без токопроводящего кабеля, скутерах, бесперебойных источниках питания и медицинском оборудовании. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 1. Сравнивая напряжение батарей с запрограммированными порогами, микросхема при необходимости включает режим балансировки. На рисунке 2 показан принцип действия. Если напряжение какой-либо батареи превышает заданный порог, заряд прекращается, подключаются байпасные цепочки. Заряд не возобновляется до тех пор, пока напряжение батареи ни снизится ниже порогового и процедура балансировки прекратится.

Рис. 1. Микросхема BQ77PL900, используемая в автономном
режиме работы для защиты блока батарей

При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего импеданса батарей (см. рис. 3). Дело в том, что внутренний импеданс вносит свой вклад в разброс напряжений при заряде. Микросхема защиты батарей не может определить, чем вызвана разбалансировка напряжений: разной емкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся на 100% заряженными. В микросхеме указателя заряда BQ2084 используется улучшенная версия балансировки, основанная на изменении напряжения. Чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика. Другое преимущество BQ2084 - измерение и анализ напряжения всех батарей, входящих в блок. Однако в любом случае этот метод применим лишь в режиме зарядки.


Рис. 2. Пассивный метод, основанный на балансировке по напряжению

Рис. 3. Пассивный метод балансировки по напряжению
неэффективно использует емкость батарей

Микросхемы семейства BQ20ZXX, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении СЗБ и емкости батареи. В этой технологии для каждой батареи вычисляется заряд Q NEED , необходимый для достижения полностью заряженного состояния, после чего находится разница ΔQ между Q NEED всех батарей. Затем микросхема включает силовые ключи, через которые происходит балансировка батареи до состояния ΔQ = 0. Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время: и при зарядке, и при разрядке батарей. При использовании технологии Impedance Track достигается более точная балансировка батарей (см. рис. 4).

Рис. 4.

АКТИВНАЯ БАЛАНСИРОВКА

По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной батареи к менее заряженной вместо резисторов используются индуктивности и емкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии. PowerPump использует n-канальный p-канальный MOSFET и дроссель, который расположен между парой батарей. Схема показана на рисунке 5. MOSFET и дроссель составляют промежуточный понижающий/повышающий преобразователь. Если BQ78PL114 определяет, что верхней батарее нужно передать энергию в нижнюю, на выводе PS3 формируется сигнал частотой около 200 кГц с коэффициентом заполнения около 30%. Когда ключ Q1 открыт, энергия из верхней батареи запасается в дросселе. Когда ключ Q1 закрывается, энергия, запасенная в дросселе, через обратный диод ключа Q2 поступает в нижнюю батарею.

Рис. 5.

Потери энергии при этом невелики и в основном происходят в диоде и дросселе. Микросхема BQ78PL114 реализует три алгоритма балансировки:

  • по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше;
  • по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
  • по СЗБ (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20ZXX при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. рис. 6)

Рис. 6.

Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с внутренними байпасными ключами. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее чем 5%) можно достичь за один или два цикла.
Кроме того, технология PowerPump имеет и другие очевидные преимущества: балансировка может происходить при любом режиме работы - заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию. По сравнению с пассивным методом теряется гораздо меньше энергии.

ОБСУЖДЕНИЕ ЭФФЕКТИВНОСТИ АКТИВНОГО И ПАССИВНОГО МЕТОДА БАЛАНСИРОВКИ

Технология PowerPump быстрее производит балансировку. При разбалансировке 2% батарей емкостью 2200 мА·ч она может быть произведена за один или два цикла. При пассивной балансировке встроенные в батарейный блок силовые ключи ограничивают максимальное значение тока, поэтому может потребоваться много больше циклов балансировки. Процесс балансировки может быть даже прерван при большой разнице параметров батарей.
Увеличить скорость пассивной балансировки можно за счет использования внешних компонентов. На рисунке 7 приведен типичный пример такого решения, которое можно использовать совместно с микросхемами BQ77PL900, BQ2084 или семейства BQ20ZXX. Вначале включается внутренний ключ батареи, который создает небольшой ток смещения, протекающий через резисторы R Ext1 и R Ext2 , включенные между выводами батареи и микросхемой. Напряжение «затвор-исток» на резисторе RExt2 включает внешний ключ, и ток балансировки начинает протекать через открытый внешний ключ и резистор R Bal .

Рис. 7. Принципиальная схема пассивной балансировки
с использованием внешних компонентов

Недостаток этого метода заключается в том, что одновременно не может происходить балансировка смежной батареи (см. рис. 8а). Это происходит из-за того, что когда открыт внутренний ключ смежной батареи, через резистор R Ext2 не может протекать ток. Поэтому ключ Q1 остается закрытым даже тогда, когда открыт внутренний ключ. На практике эта проблема не имеет большого значения, т.к. при таком способе балансировки батарея, подключенная к Q2 быстро балансируется, а следом за ней балансируется и батарея, подключенная к ключу Q2.
Другая проблема заключается в возникновении высокого напряжения сток-исток V DS , которое может возникнуть когда балансируется каждая вторая батарея. На рисунке 8б показан случай, когда балансируются верхняя и нижняя батареи. При этом напряжение V DS среднего ключа может превысить максимально допустимое. Решение этой проблемы - ограничение максимального значения резистора R Ext или исключение возможности одновременной балансировки каждой второй батареи.

Метод быстрой балансировки - новый путь улучшения безопасности эксплуатации батарей. При пассивной балансировке цель заключается в том, чтобы сбалансировать емкость батарей, но из-за малых токов балансировки это возможно лишь в конце цикла заряда. Другими словами, перезаряд плохой батареи может быть предотвращен, но это не увеличит время непрерывной работы без подзаряда, т.к. слишком много энергии будет потеряно в байпасных резистивных цепочках.
При использовании технологии активной балансировки PowerPump одновременно достигаются две цели - балансировка емкости в конце цикла заряда и минимальное различие напряжений в конце цикла разряда. Энергия запасается и отдается слабой батарее, а не рассеивается в виде тепла в байпасных цепях.

ЗАКЛЮЧЕНИЕ

Корректная балансировка напряжения батарей - один из путей увеличения безопасности эксплуатации батарей и увеличения срока их службы. Новые технологии балансировки отслеживают состояние каждой батареи, что позволяет увеличить срок их службы и повысить безопасность эксплуатации. Технология быстрой активной балансировки PowerPump увеличивает время работы без подзарядки, а также позволяет максимально и с высокой эффективностью сбалансировать батареи в конце цикла разряда.

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650 , на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно - собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя - нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием "лишнего" электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd - это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры - так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое "балансиром". Простейший тип балансира - это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A - все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2...D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания - смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора - надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения - зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Обсудить статью ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Похожие публикации