Компьютеры с современный мир

Расчёт иформационного объема текстового сообщения. Проверочная работа «Измерение текстовой информации Что такое объем сообщения

14. В какой строке верно представлена схема передачи информации?

а) источник -» кодирующее устройство -» декодирующее устройство -»приёмник
б) источник -> кодирующее устройство -> канал связи -> декодирующее устройство -> приёмник
в) источник -> кодирующее устройство -» помехи -» декодирующее устройство -> приёмник
г) источник -> декодирующее устройство -» канал связи -> кодирующее устройство -> приёмник

Пятеро разведчиков подошли к реке, через которую лежал их дальнейший путь. Река была глубокая, а моста через нее не было. У берега стояла лодка с сидящими

в ней двумя мальчиками. Разведчики попросили мальчиков перевезти их всех на другой берег. Составьте алгоритм переправы, если известно, что лодка вмещает только одного солдата либо двух мальчиков, а солдата и мальчика уже не вмещает. За сколько рейсов можно это сделать? За рейс следует считать движение лодки в одном направлении.
3. Двум англичанам, путешествующим в дебрях Амазонки, и двум их проводникам из местного племени требуется переправиться на противоположный берег реки. В распоряжении путешественников имеется небольшая надувная лодка, способная вместить только двух человек. Англичане подозревают, что их проводники из племени людоедов, и чувствуют себя в безопасности только тогда, когда находятся вдвоем. Как устроить безопасную переправу?
4. К реке одновременно подошли три купца и три разбойника. Всем необходимо было переправиться на другой, противоположный берег. У берега стояла лодка, которая могла вместить только двух человек. Купцы боязливо поглядывали на разбойников, так как знали, что во время переправы могло всякое случиться. Если во время переправы на том или ином берегу число купцов и разбойников будет одинаковым, то разбойники не тронут купцов; если же число разбойников превысит число купцов хотя бы на одного человека, то разбойники убьют купцов. Перед купцами стояла сложная задача, но она легко была ими решена - все перебрались на тот берег и жертв не было. Как сумели переправиться на тот берег купцы и разбойники и сколько рейсов туда и обратно совершила лодка? За рейс следует считать движение лодки в одном направлении.
5. Дело было в Америке. Как-то раз подошли к реке англичанин, негр и индеец, каждый со своей женой. Всем нужно было переправиться на другой берег. В их распоряжении была только одна лодка (да и та без гребца), способная вместить лишь двоих. Договорившись между собой, мужчины решили было приступить к переправе, как вдруг выяснилось, что ни одна из жен не желает переправляться в лодке с чужим мужем или оставаться на берегу в мужском обществе без своего мужа. Мужья призадумались, но все же сумели догадаться, как выполнить желание своих жен. Как они сумели переправиться через реку?
6. Как крестьянину перевезти в лодке с одного берега на другой козла, капусту, двух волков и собаку, если известно, что волка нельзя оставлять без присмотра с козлом и собакой, собака в «ссоре» с козлом, а козел «неравнодушен» к капусте? В лодке только три места, поэтому можно брать с собой не более двух животных или одно животное и капусту.

Помогиите, пожалуйста! Напишите всё с объяснением. 1. Перевести 5174510202 бит в Кбайты, Мбайты, Гбайты. 2. Сколько 1 и 0 в двоичной

Тестовая работа "Измерение текстовой информации"

Учебный предмет: информатика.

УМК: Босова Л.Л., Информатика: учебник для 7 класса / Л.Л. Босова, А.Ю. Босова. - М.: БИНОМ. Лаборатория знаний.

Босова Л.Л., Информатика: рабочая тетрадь для 7 класса / Л.Л. Босова, А.Ю. Босова. - М.: БИНОМ. Лаборатория знаний.

Цель тестовой работы: проверка уровня усвоения знаний по теме "Текстовый процессор", умение вычислять количество информации текстовых данных.

Инструкция: За 15 минут Вам предстоит ответить на 5 вопросов теста. В качестве ответа на задание должно быть только число. За каждый правильный ответ выставляется 1 балл. Общее количество баллов по тесту - 5.

Критерии оценки:

Оценка "5" - 5 правильных ответов.

Оценка "4" - 4 правильных ответов.

Оценка "3" - 3 правильных ответов.

Оценка "2" - меньше 3 правильных ответов.

Вариант № 1

1. Сколько байтов в 65536 битах?

3. Сколько бит будет занято на носителе информации документом из 2 страниц, каждая страница содержит 20 строк по 60 знаков. Для записи использован алфавит из 4 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 8 символов, информационный объем равен 360бит.

5. Определите информационный объем сообщения «ветер», записанного с помощью 1024 символьного алфавита (кавычки не учитывать).

Вариант № 2

1. Сколько байтов в 12288 битах?

3. Сколько бит будет занято на носителе информации документом из 5 страниц, каждая страница содержит 24 строк по 55 знаков. Для записи использован алфавит из 16 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 32 символов, информационный объем равен 700бит.

5. Определите информационный объем сообщения «солнце», записанного с помощью 512 символьного алфавита (кавычки не учитывать).

Вариант № 3

1. Сколько байтов в 24576 битах?

3. Сколько бит будет занято на носителе информации документом из 7 страниц, каждая страница содержит 28 строк по 70 знаков. Для записи использован алфавит из 64 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 128 символов, информационный объем равен 1120бит.

5. Определите информационный объем сообщения «вода», записанного с помощью 256 символьного алфавита (кавычки не учитывать).

Вариант № 4

1. Сколько байтов в 57344 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 3 жестов?

3. Сколько бит будет занято на носителе информации документом из 3 страниц, каждая страница содержит 32 строк по 65 знаков. Для записи использован алфавит из 256 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 512 символов, информационный объем равен 1620бит.

5. Определите информационный объем сообщения «земля», записанного с помощью 128 символьного алфавита (кавычки не учитывать).

Вариант № 5

1. Сколько байтов в 20480 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 4 жестов?

3. Сколько бит будет занято на носителе информации документом из 6 страниц, каждая страница содержит 22 строк по 40 знаков. Для записи использован алфавит из 1024 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 4 символов, информационный объем равен 400бит.

5. Определите информационный объем сообщения «трава», записанного с помощью 64 символьного алфавита (кавычки не учитывать).

Вариант № 6

3. Сколько бит будет занято на носителе информации документом из 4 страниц, каждая страница содержит 26 строк по 80 знаков. Для записи использован алфавит из 8 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 16 символов, информационный объем равен 1000бит.

5. Определите информационный объем сообщения «звезда», записанного с помощью 32 символьного алфавита (кавычки не учитывать).

Вариант № 7

1. Сколько байтов в 49152 битах?

3. Сколько бит будет занято на носителе информации документом из 5 страниц, каждая страница содержит 30 строк по 60 знаков. Для записи использован алфавит из 32 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 64 символов, информационный объем равен 1380бит.

5. Определите информационный объем сообщения «атмосфера», записанного с помощью 1024 символьного алфавита (кавычки не учитывать).

Вариант № 8

1. Сколько байтов в 28672 битах?

3. Сколько бит будет занято на носителе информации документом из 7 страниц, каждая страница содержит 34 строк по 75 знаков. Для записи использован алфавит из 128 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 256 символов, информационный объем равен 1680бит.

5. Определите информационный объем сообщения «природа», записанного с помощью 256 символьного алфавита (кавычки не учитывать).

Вариант № 9

1. Сколько байтов в 90112 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 2 жеста?

3. Сколько бит будет занято на носителе информации документом из 3 страниц, каждая страница содержит 21 строк по 80 знаков. Для записи использован алфавит из 512 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 1024 символов, информационный объем равен 1900бит.

5. Определите информационный объем сообщения «явление», записанного с помощью 64 символьного алфавита (кавычки не учитывать).

Вариант № 10

1. Сколько байтов в 81920 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 6 жестов?

3. Сколько бит будет занято на носителе информации документом из 4 страниц, каждая страница содержит 23 строк по 65 знаков. Для записи использован алфавит из 16 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 512 символов, информационный объем равен 1350бит.

5. Определите информационный объем сообщения «жизнь», записанного с помощью 32 символьного алфавита (кавычки не учитывать).

Вариант № 11

1. Сколько байтов в 36864 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 8 жестов?

3. Сколько бит будет занято на носителе информации документом из 8 страниц, каждая страница содержит 25 строк по 70 знаков. Для записи использован алфавит из 64 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 128 символов, информационный объем равен 1190бит.

5. Определите информационный объем сообщения «скорость», записанного с помощью 128 символьного алфавита (кавычки не учитывать).

Вариант № 12

1. Сколько байтов в 98304 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 10 жестов?

3. Сколько бит будет занято на носителе информации документом из 3 страниц, каждая страница содержит 27 строк по 90 знаков. Для записи использован алфавит из 256 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 32 символов, информационный объем равен 1100бит.

5. Определите информационный объем сообщения «ядро», записанного с помощью 256 символьного алфавита (кавычки не учитывать).

Вариант № 13

1. Сколько байтов в 40960 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 7 жестов?

3. Сколько бит будет занято на носителе информации документом из 6 страниц, каждая страница содержит 29 строк по 60 знаков. Для записи использован алфавит из 32 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 8 символов, информационный объем равен 600бит.

5. Определите информационный объем сообщения «забота», записанного с помощью 512 символьного алфавита (кавычки не учитывать).

Вариант № 14

1. Сколько байтов в 69632 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 5 жестов?

3. Сколько бит будет занято на носителе информации документом из 8 страниц, каждая страница содержит 20 строк по 55 знаков. Для записи использован алфавит из 128 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 256 символов, информационный объем равен 1640бит.

5. Определите информационный объем сообщения «толерантность», записанного с помощью 256 символьного алфавита (кавычки не учитывать).

Вариант № 15

1. Сколько байтов в 32768 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 10 жестов?

3. Сколько бит будет занято на носителе информации документом из 5 страниц, каждая страница содержит 28 строк по 70 знаков. Для записи использован алфавит из 512 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 64 символов, информационный объем равен 1242 бит.

5. Определите информационный объем сообщения «терпение», записанного с помощью 128 символьного алфавита (кавычки не учитывать).

Вариант № 16

1. Сколько байтов в 61440 битах?

2. Туземец знает два различных жеста. Сколько он может показать различных слов из этих жестов, если можно использовать в слове 9 жестов?

3. Сколько бит будет занято на носителе информации документом из 2 страниц, каждая страница содержит 26 строк по 60 знаков. Для записи использован алфавит из 256 знаков.

4. Определите количество символов в сообщении, алфавит которого состоит из 16 символов, информационный объем равен 788бит.

5. Определите информационный объем сообщения «позитив», записанного с помощью 64 символьного алфавита (кавычки не учитывать).

Правильные ответы

Номер варианта

Номер задания

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

В зависимости от способа восприятия знаки делятся на:

  • зрительные (буквы и цифры, математические знаки, музыкальные ноты, дорожные знаки и др.);
  • слуховые (устная речь, звонки, сирены, гудки и др.);
  • осязательные (азбука Брайля для слепых, жесты-касания и др.);
  • обонятельные;
  • вкусовые.

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

  • иконические — их форма похожа на отображаемый объект (например, значок папки «Мой компьютер» на «Рабочем столе» компьютера);
  • символы — связь между их формой и значением устанавливается по общепринятому соглашению (например, буквы, математические символы ∫, ≤, ⊆, ∞; символы химических элементов).

Для представления информации используются знаковые системы, которые называются языками . Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Языки делятся на:

  • естественные (разговорные) — русский, английский, немецкий и др.;
  • формальные — встречающиеся в специальных областях человеческой деятельности (например, язык алгебры, языки программирования, электрических схем и др.)

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит . 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Например, пусть шарик находится в одной из четырех коробок. Таким образом, имеется четыре равновероятных события (N = 4). Тогда по формуле Хартли 4 = 2 I . Отсюда I = 2. То есть сообщение о том, в какой именно коробке находится шарик, содержит 2 бита информации.

Алфавитный подход

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log 2 32 = 5 битов.

Если N не является целой степенью 2, то число log 2 N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log 2 N", где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N" = 32; I = log 2 N" = log 2 (2 5) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

I = M · log 2 N.

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Решение. С помощью n лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 n сигналов. 2 5 < 50 < 2 6 , поэтому пяти лампочек недостаточно, а шести хватит.

Ответ: 6.

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log 2 101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log 2 128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Ответ: 70 байтов.

Вероятностный подход

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$I=-∑↙{i=1}↖{N}p_ilog_2p_i$,

где $I$ — количество информации;

$N$ — количество возможных событий;

$p_i$ — вероятность $i$-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

$p_1={1}/{2}, p_2={1}/{4}, p_3={1}/{8}, p_4={1}/{8}$.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

$I=-({1}/{2}·log_2{1}/{2}+{1}/{4}·log_2{1}/{4}+{1}/{8}·log_2{1}/{8}+{1}/{8}·log_2{1}/{8})={14}/{8}$ битов $= 1.75 $бита.

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 байт = 8 битов

1 килобайт (Кб) = 1024 байта = 2 10 байтов

1 мегабайт (Мб) = 1024 килобайта = 2 20 байтов

1 гигабайт (Гб) = 1024 мегабайта = 2 30 байтов

1 терабайт (Тб) = 1024 гигабайта = 2 40 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 0100 2 = В4 16 .

Ответ: В4 16 .

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации , или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000: 8: 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000: 8: 1024) ⋅ (3 ⋅ 60) = (2 8 ⋅ 10 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = (2 8 ⋅ 125 ⋅ 2 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = 125 ⋅ 45 = 5625 Кбайт.

Ответ: 5625 Кбайт.

Представление числовой информации. Сложение и умножение в разных системах счисления

Представление числовой информации с помощью систем счисления

Для представления информации в компьютере используется двоичный код, алфавит которого состоит из двух цифр — 0 и 1. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Система счисления — это система записи чисел с помощью определенного набора цифр.

Система счисления называется позиционной , если одна и та же цифра имеет различное значение, которое определяется ее местом в числе.

Позиционной является десятичная система счисления. Например, в числе 999 цифра «9» в зависимости от позиции означает 9, 90, 900.

Римская система счисления является непозиционной . Например, значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.

Позиция цифры в числе называется разрядом . Разряд числа возрастает справа налево, от младших разрядов к старшим.

Количество различных цифр, употребляемых в позиционной системе счисления, называется ее основанием .

Развернутая форма числа — это запись, которая представляет собой сумму произведений цифр числа на значение позиций.

Например: 8527 = 8 ⋅ 10 3 + 5 ⋅ 10 2 + 2 ⋅ 10 1 + 7 ⋅ 10 0 .

Развернутая форма записи чисел произвольной системы счисления имеет вид

$∑↙{i=n-1}↖{-m}a_iq^i$,

где $X$ — число;

$a$ — цифры численной записи, соответствующие разрядам;

$i$ — индекс;

$m$ — количество разрядов числа дробной части;

$n$ — количество разрядов числа целой части;

$q$ — основание системы счисления.

Например, запишем развернутую форму десятичного числа $327.46$:

$n=3, m=2, q=10.$

$X=∑↙{i=2}↖{-2}a_iq^i=a_2·10^2+a_1·10^1+a_0·10^0+a_{-1}·10^{-1}+a_{-2}·10^{-2}=3·10^2+2·10^1+7·10^0+4·10^{-1}+6·10^{-2}$

Если основание используемой системы счисления больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение: В — двоичная система, О — восмеричная, Н — шестнадцатиричная.

Например, если в двенадцатеричной системе счисления 10 = А, а 11 = В, то число 7А,5В 12 можно расписать так:

7А,5В 12 = В ⋅ 12 -2 + 5 ⋅ 2 -1 + А ⋅ 12 0 + 7 ⋅ 12 1 .

В шестнадцатеричной системе счисления 16 цифр, обозначаемых 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, что соответствует следующим числам десятеричной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Примеры чисел: 17D,ECH; F12AH.

Перевод чисел в позиционных системах счисления

Перевод чисел из произвольной системы счисления в десятичную

Для перевода числа из любой позиционной системы счисления в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

17D,ECH = 12 ⋅ 16 -2 + 14 ⋅ 16 -1 + 13 ⋅ 160 + 7 ⋅ 16 1 + 1 ⋅ 16 2 = 381,921875.

Перевод чисел из десятичной системы счисления в заданную

Для преобразования целого числа десятичной системы счисления в число любой другой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например, переведем десятичное число 475 в двоичную систему счисления. Для этого будем последовательно выполнять деление нацело на основание новой системы счисления, т. е. на 2:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1 ⋅ 2 8 + 1 ⋅ 2 7 + 1 ⋅ 2 6 + 0 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 0 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 1 + 2 + 8 + 16 + 64 + 128 + 256 = 475 10 .

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например, переведем десятичную дробь 0,375 10 в двоичную систему счисления:

Полученный результат — 0,011 2 .

Не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части.

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Для записи восьмеричных чисел используются восемь цифр, т. е. в каждом разряде числа возможны 8 вариантов записи. Каждый разряд восьмеричного числа содержит 3 бита информации (8 = 2 І ; І = 3).

Таким образом, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например:

1234,777 8 = 001 010 011 100,111 111 111 2 = 1 010 011 100,111 111 111 2 ;

1234567 8 = 001 010 011 100 101 110 111 2 = 1 010 011 100 101 110 111 2 .

При переводе двоичного числа в восьмеричную систему счисления нужно каждую триаду двоичных цифр заменить восьмеричной цифрой. При этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например:

1100111 2 = 001 100 111 2 = 147 8 ;

11,1001 2 = 011,100 100 2 = 3,44 8 ;

110,0111 2 = 110,011 100 2 = 6,34 8 .

Для записи шестнадцатеричных чисел используются шестнадцать цифр, т. е. для каждого разряда числа возможны 16 вариантов записи. Каждый разряд шестнадцатеричного числа содержит 4 бита информации (16 = 2 І ; І = 4).

Таким образом, для перевода двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры и преобразовать каждую группу в шестнадцатеричную цифру.

Например:

1100111 2 = 0110 0111 2 = 67 16 ;

11,1001 2 = 0011,1001 2 = 3,9 16 ;

110,0111001 2 = 0110,0111 0010 2 = 65,72 16 .

Для перевода шестнадцатеричного числа в двоичный код необходимо каждую цифру этого числа представить четверкой двоичных цифр.

Например:

1234,AB77 16 = 0001 0010 0011 0100,1010 1011 0111 0111 2 = 1 0010 0011 0100,1010 1011 0111 0111 2 ;

CE4567 16 = 1100 1110 0100 0101 0110 0111 2 .

При переводе числа из одной произвольной системы счисления в другую нужно выполнить промежуточное преобразование в десятичное число. При переходе из восьмеричного счисления в шестнадцатеричное и обратно используется вспомогательный двоичный код числа.

Например, переведем троичное число 211 3 в семеричную систему счисления. Для этого сначала преобразуем число 211 3 в десятичное, записав его развернутую форму:

211 3 = 2 ⋅ 3 2 + 1 ⋅ 3 1 + 1 ⋅ 3 0 = 18 + 3 + 1 = 22 10 .

Затем переведем десятичное число 22 10 в семеричную систему счисления делением нацело на основание новой системы счисления, т. е. на 7:

Итак, 211 3 = 31 7 .

Примеры решения задач

Пример 1. В системе счисления с некоторым основанием число 12 записывается в виде 110. Указать это основание.

Решение. Обозначим искомое основание п. По правилу записи чисел в позиционных системах счисления 12 10 = 110 n = 0 ·n 0 + 1 · n 1 + 1 · n 2 . Составим уравнение: n 2 + n = 12 . Найдем натуральный корень уравнения (отрицательный корень не подходит, т. к. основание системы счисления, по определению, натуральное число большее единицы): n = 3 . Проверим полученный ответ: 110 3 = 0· 3 0 + 1 · 3 1 + 1 · 3 2 = 0 + 3 + 9 = 12 .

Ответ: 3.

Пример 2. Указать через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4.

Решение. Последняя цифра в записи числа представляет собой остаток от деления числа на основание системы счисления. 22 - 4 = 18. Найдем делители числа 18. Это числа 2, 3, 6, 9, 18. Числа 2 и 3 не подходят, т. к. в системах счисления с основаниями 2 и 3 нет цифры 4. Значит, искомыми основаниями являются числа 6, 9 и 18. Проверим полученный результат, записав число 22 в указанных системах счисления: 22 10 = 34 6 = 24 9 = 14 18 .

Ответ: 6, 9, 18.

Пример 3. Указать через запятую в порядке возрастания все числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101. Ответ записать в десятичной системе счисления.

Решение. Для удобства воспользуемся восьмеричной системой счисления. 101 2 = 5 8 . Тогда число х можно представить как x = 5 · 8 0 + a 1 · 8 1 + a 2 · 8 2 + a 3 · 8 3 + ... , где a 1 , a 2 , a 3 , … — цифры восьмеричной системы. Искомые числа не должны превосходить 25, поэтому разложение нужно ограничить двумя первыми слагаемыми (8 2 > 25), т. е. такие числа должны иметь представление x = 5 + a 1 · 8. Поскольку x ≤ 25 , допустимыми значениями a 1 будут 0, 1, 2. Подставив эти значения в выражение для х, получим искомые числа:

a 1 = 0; x = 5 + 0 · 8 = 5;.

a 1 =1; x = 5 + 1 · 8 = 13;.

a 1 = 2; x = 5 + 2 · 8 = 21;.

Выполним проверку:

13 10 = 1101 2 ;

21 10 = 10101 2 .

Ответ: 5, 13, 21.

Арифметические операции в позиционных системах счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Пример выполнения сложения : сложим двоичные числа 111 и 101, 10101 и 1111:

Пример выполнения вычитания: вычтем двоичные числа 10001 - 101 и 11011 - 1101:

Пример выполнения умножения: умножим двоичные числа 110 и 11, 111 и 101:

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Например, выполним сложение восьмеричных чисел 36 8 и 15 8 , а также вычитание шестнадцатеричных чисел 9С 16 и 67 16:

При выполнении арифметических операций над числами, представленными в разных системах счисления, нужно предварительно перевести их в одну и ту же систему.

Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой : каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 2 7 + 1 ⋅ 2 6 + 1 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 1 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 255 10 .

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2 n - 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом .

Для представления отрицательных чисел используется дополнительный код . Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2 n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа . (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа -2014 10 для шестнадцатиразрядного представления:

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

Например:

1) Найдем разность 13 10 - 12 10 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

13 10 = 1101 2 и 12 10 = 1100 2 .

Запишем прямой, обратный и дополнительный коды для числа -12 10 и прямой код для числа 13 10 в восьми битах:

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 8 10 - 13 10 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа -13 10 и прямой код для числа 8 10 в восьми битах:

Вычитание заменим сложением:

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 - 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число -5 10 .

Так как при п-разрядном представлении отрицательного числа А в дополнительном коде старший разряд выделяется для хранения знака числа, минимальное отрицательное число равно: А = -2 n-1 , а максимальное: |А| = 2 n-1 или А = -2 n-1 - 1.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = -2 31 = -2147483648 10 .

Максимальное положительное число равно

А = 2 31 - 1 = 2147483647 10 .

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой , использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

где $m$ — мантисса числа (правильная отличная от нуля дробь);

$q$ — основание системы счисления;

$n$ — порядок числа.

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

2674,381 = 0,2674381 ⋅ 10 4 .

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность ) или 8 байтов (двойная точность ). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 1111111 2 = 127 10 . Так как числа представляются в двоичной системе счисления, то

$q^n = 2^{127}≈ 1.7 · 10^{38}$.

Аналогично, максимальное значение мантиссы равно

$m = 2^{23} - 1 ≈ 2^{23} = 2^{(10 · 2.3)} ≈ 1000^{2.3} = 10^{(3 · 2.3)} ≈ 10^7$.

Таким образом, диапазон чисел обычной точности составляет $±1.7 · 10^{38}$.

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование , т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными . Они позволяют использовать 256 символов (N = 2 I = 2 8 = 256). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode . В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов (N = 2 16 = 65536). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Ответ: 32 байта или 496 битов.

Расчёт информационного объёма текстового сообщения (количества информации, содержащейся в информационном сообщении) основан на подсчёте количества символов в этом сообщении, включая пробелы, и на определении информационного веса одного символа, который зависит от кодировки, используемой при передаче и хранении данного сообщения.

В традиционной кодировке (Windows, ASCII) для кодирования одного символа используется 1 байт (8 бит). Эта величина и является информационным весом одного символа. Такой 8-ми разрядный код позволяет закодировать 256 различных символов, т.к. 2 8 =256.

В настоящее время широкое распространение получил новый международный стандарт Unicode, который отводит на каждый символ два байта (16 бит). С его помощью можно закодировать 2 16 = 65536 различных символов.

Итак, для расчёта информационного объёма текстового сообщения используется формула

V text = n симв *i / k сжатия, (2)

где V text – это информационный объём текстового сообщения, измеряющийся в байтах, килобайтах, мегабайтах; n симв – количество символов в сообщении, i – информационный вес одного символа, который измеряется в битах на один символ; k сжатия – коэффициент сжатия данных, без сжатия он равен 1.

Информация в кодировке Unicode передается со скоростью 128 знаков в секунду в течение 32 минут. Какую часть дискеты ёмкостью 1,44Мб займёт переданная информация?

Дано : v = 128 символов/сек; t = 32 минуты=1920сек; i = 16 бит/символ

Решение:

n симв = v*t = 245760 символов V=n симв *i = 245760*16 = 3932160 бит = 491520 байт = 480 Кб = 0,469Мб, что составляет 0,469Мб*100%/1,44Мб = 33% объёма дискеты

Ответ: 33% объёма дискеты будет занято переданным сообщением

Расчёт иформационного объема растрового изображения

Расчёт информационного объёма растрового графического изображения (количества информации, содержащейся в графическом изображении) основан на подсчёте количества пикселей в этом изображении и на определении глубины цвета (информационного веса одного пикселя).

Итак, для расчёта информационного объёма растрового графического изображения используется формула (3):

V pic = K * n симв * i / k сжатия, (3)

где V pic – это информационный объём растрового графического изображения, измеряющийся в байтах, килобайтах, мегабайтах; K – количество пикселей (точек) в изображении, определяющееся разрешающей способностью носителя информации (экрана монитора, сканера, принтера); i – глубина цвета, которая измеряется в битах на один пиксель; k сжатия – коэффициент сжатия данных, без сжатия он равен 1.

Глубина цвета задаётся количеством битов, используемым для кодирования цвета точки. Глубина цвета связана с количеством отображаемых цветов формулой N=2 i , где N – это количество цветов в палитре, i – глубина цвета в битах на один пиксель.

1) В результате преобразования растрового графического изображения количество цветов уменьшилось с 256 до 16. Как при этом изменится объем видеопамяти, занимаемой изображением?

Дано : N 1 = 256 цветов; N 2 = 16 цветов;

Решение:

Используем формулы V 1 = K*i 1 ; N 1 = 2 i 1 ; V 2 = K*i 2 ; N 2 = 2 i 2 ;

N 1 = 256 = 2 8 ; i 1 = 8 бит/пиксель

N 2 = 16 = 2 4 ; i 2 = 4 бит/пиксель

V 1 = K*8; V 2 = K*4;

V 2 /V 1 = 4/8 = 1/2

Ответ : объём графического изображения уменьшится в два раза.

2) Сканируется цветное изображение стандартного размера А4 (21*29,7 см). Разрешающая способность сканера 1200dpi и глубина цвета 24 бита. Какой информационный объём будет иметь полученный графический файл?

Дано : i = 24 бита на пиксель; S = 21см*29,7 см D = 1200 dpi (точек на один дюйм)

Решение:

Используем формулы V = K*i;

1дюйм = 2,54 см

S = (21/2,54)*(29,7/2,54) = 8,3дюймов*11,7дюймов

K = 1200*8,3*1200*11,7 = 139210118 пикселей

V = 139210118*24 = 3341042842бита = 417630355байт = 407842Кб = 398Мб

Ответ : объём сканированного графического изображения равен 398 Мегабайт

Тема: «Измерение информации»

Формулы

Для определения информационного объема сообщения потребуются две формулы:

1. \(N= 2^i \)

N — мощность алфавита

2. \(I = k * i \) ​

I — информационный объём сообщения

k — количество символов в сообщении

i — информационный объём одного символа в алфавите

Формула нахождения k:

Формула нахождения i:

Задачи

Задача №1. Сообщение, записанное буквами из 128-символьного алфавита, содержит 30 символов. Найти информационный объем всего сообщения?

Решение.

\(I = ? \) ​

\(i = ? \) ​

\(N= 2^i \) = \(128= 2^7 \)

\(i = 7 \)​ бит. Какая степень двойки, такой вес одного символа в алфавите. Далее определяем информационный объем сообщения по формуле:

\(I = k * i \) ​ = 30 * 7 = 210 бит

Ответ: 210 бит

Задача №2. Информационное сообщение объемом 4 Кбайта содержит 4096 символов. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?

Решение. Запишем, что дано по условию задачи и что необходимо найти:

\(I = 4 \) ​ Кб

\(N = ? \) ​

\(i = ? \) ​

Очень важно перевести все числа в степени двойки:

1 Кб = \(2^{13} \) бит

\(I = 4 \) ​ Кб = \(2^2 \) * \(2^{13} \) = \(2^{15} \) бит

k = 4096 = \(2^{12} \)

Сначала найдем вес одного символа по формуле:

\(i = \frac{\mathrm I}{\mathrm k} \) ​ = \(2^{15} \) : \(2^{12} \) = \(2^3 \) = 8 бит

\(N= 2^i \) \(2^8 =256\)

Ответ: 256 символов в алфавите.

Задача №3. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составляет 1/16 Мб?

Решение. Запишем, что дано по условию задачи и что необходимо найти:

​ Мб

\(k = ? \) ​

\(i = ? \) ​

Представим \(I = \frac{\mathrm 1}{\mathrm 16} \) ​ Мб в степень двойки:

1 Мб = \(2^{23} \) бит

\(I = \frac{\mathrm 1}{\mathrm 16} \) ​ Мб = \(2^{23} \) : ​\(2^4 \) = \(2^{19} \) бит.

Сначала найдем вес одного символа по формуле:

\(N= 2^i \) = \(2^4 = 16 \)

\(i = 4 \)​ бит = \(2^2 \)

Теперь найдём количество символов в сообщении k:

\(k = \frac{\mathrm I}{\mathrm i} \) ​ = \(2^{19} \) ​ : \(2^2 \) = \(2^{17} \) = 131072

Ответ: 131072 символов в сообщении.

Похожие публикации