Компьютеры с современный мир

Микросхема пзу постоянное запоминающее устройство хранит. Общая характеристика постоянной памяти

ПЗУ. Принципы построения и

Микросхемы ПЗУ (Постоянное Запоминающее Устройство, ROM - Read-Only Memory

Память, доступная только для чтения) представляют собой однократно программируемое устройство памяти, предназначенное для чтения информации (энергонезависимое).
Различают несколько типов ПЗУ:
ROM (Read-Only Memory, Постоянное Запоминающее Устройство, ПЗУ). Строятся на мультиплексорах или по масочной структуре (см. ниже). Программируются на заводе при производстве. Репрограммирование невозможно.
PROM (Programmable ROM, Программируемое ПЗУ, ППЗУ). В качестве элементов программирования используются специальные перемычки. Программирование заключается в разрушении или образовании перемычки. Также является однократным действием, однако, в отличие от ROM, его можно осуществить даже в домашних условиях.
EPROM (Erasable PROM, Стираемое ППЗУ, СППЗУ). Исторически явилось первым репрограммируемым ПЗУ. Технология основана на применении транзисторов с плавающим затвором. ПЗУ на основе EPROM требуют стирания старой конфигурации под воздействием
ультрафиолетового (УФ) излучения с извлечением ИМС из устройств и имеют ограничение числа циклов программировании из-за деградации свойств материалов под воздействием УФ излучения.
EEPROM (Electrically Erasable PROM, Электрически Стираемое ППЗУ, ЭС-ППЗУ). ППЗУ, очищаемое электрическими сигналами. Для обновления не требует извлечения микросхемы из устройства и допускает достаточно большое число циклов стирания.
FLASH (флэш-память). Технологически аналогична EEPROM, однако в ней используется блочный доступ к сохраняемым данным.
ROM. Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация, как программы в микроконтроллерах, начальные загрузчики и BIOS в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации можно построить на мультиплексорах (рис. 1).
В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля).
Чтобы увеличить разрядность ячейки памяти ПЗУ, эти микросхемы можно соединять параллельно (выходы и записанная информация, естественно, остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рис. 2.
В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация выполняется при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше, - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в многомерную и тем самым существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Программирование ПЗУ производится на заводе – изготовителе.
PROM. Также разработаны программируемые ПЗУ. В этих микросхемах постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве микросхемы изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти логических единиц. В процессе программирования на выводы питания и выходы микросхемы подается повышенное питание. При этом если на выход микросхемы подается напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход микросхемы подать низкий уровень напряжения (присоединить к корпусу), то через перемычку будет протекать ток, который испарит эту перемычку, и при последующем считывании информации из этой ячейки будет считываться логический ноль. Программирование производится при помощи специального программатора.
Возможно также применение другой технологии создания PROM, когда перемычка образована трехслойным диэлектриком с чередованием слоев «оксид-нитрид-оксид». Программирующий импульс напряжения пробивает перемычку и создает проводящий канал между электродами. Величина тока, создаваемого импульсами программирования, влияет на диаметр проводящего канала, что позволяет управлять параметрами проводящей перемычки.

21 вопрос (Перепрограммируемые ПЗУ)

В перепрограммируемых ПЗУ, т.е. с изменяемым содержимым, на затворах матриц МОП-транзисторов длительное время могут храниться разряды, образующих заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

ПЗУ, программируемые маской. Самым простым видом ПЗУ является диодное ПЗУ (рис.3.41).

Рисунок 3.41 - Схема диодного ПЗУ

Выбор нужного слова производится подачей сигнала низкого уровня на соответствующую адресную шину А i . При этом диоды, соединяющие разрядные линии и выбранную адресную линию, имеют малое сопротивление, что обуславливает низкий уровень напряжения на соответствующих разрядных линиях. Если же диода в точке пересечения нет, то ток через резистор R не протекает и на выходе соответствующей разрядной линии Ш j устанавливается единичный сигнал. В ПЗУ (рис.3.41) записано восемь 3-разрядных кодов, соответствующих восьми двоичным числам от 000 до 111.

Кроме этого, матрица ПЗУ может быть построена и на МОП-транзисторах. С помощью маски для металлизации подключаются необходимые элементы.

В ПЗУ, программируемых пользователем, в отличие от ПЗУ, программируемых маской, информация может быть занесена пользователем с помощью специального пульта программирования. Применение ПЗУ такого типа целесообразно при небольшом числе БИС ПЗУ.

ПЗУ строятся на основе биполярных диодных матриц (рис.3.42) или матриц биполярных транзисторов аналогично матрице МОП-транзисторов в ПЗУ, программируемых маской. Работа ПЗУ обоих типов базируется на осаждении плавких вставок (ПВ) последовательно с переходами база-эмиттер биполярных транзисторов или p-n переходами диодов. ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при подаче импульса тока (обычно величиной 50-100 мкА и длительностью 2 мс). Как и в ПЗУ, программируемой маской, ошибки, допущенные при программировании ПЗУ рассматриваемого типа, исправить нельзя.

Рисунок 3.42 - Биполярная диодная матрица

Перепрограммируемые ПЗУ (ППЗУ) относятся к числу полупостоянных ЗУ, так как после стирания хранимой в ПЗУ информации возможно занесение в тот же накопитель новых данных. Существует два типа ППЗУ: на основе МОП-матриц и на основе ПЗУ со стиранием информации ультрафиолетовым (УФ) облучением кристалла.

22 вопрос (Назначение и типы Flash-памяти)

На сегодня производители выпускают накопители на флэш-памяти нескольких типов: это карты Compact Flash, SmartMedia, MultiMedia Card, SecureDigital Card, Memory Stick и

ATA Flash. Первыми накопителями на флэш-памяти, появившимися рынке, были карты ATA Flash. Эти накопители изготавливаются в виде стандартных карт PC Card. Помимо микросхем флэш-памяти в них устанавливается АТА-контроллер, и при работе они эмулируют обычный IDE-диск. Интерфейс этих карт параллельный. Карты ATA Flash не получили широкого распространения и в настоящее время используются крайне редко.

Compact Flash. Карты Compact Flash (CF) были предложены компанией SanDisk в качестве более компактной и удобной в работе альтернативы картам ATA Flash. Поэтому разработчики стандарта CF предусмотрели возможность работы этих карт как устройств PC Card или как IDE-устройств. В первом случае карты работают как обычные PC Card устройства и их интерфейс «превращается» в шину PC Card. Во втором - как жесткие IDE-диски и их интерфейс работает как АТА-шина.

Карты CF впервые появились в 1994 г. Все карты этого типа имеют 50-контактный параллельный интерфейс. Кстати, существуют карты CF двух типов - Туре I и Туре II. Карты типа Туре II на два миллиметра толще и появились только потому, что раньше корпуса карт Туре I не позволяли разместить внутри флэш-память большого объема для изготовления вместительных носителей CF. В настоящее время такой необходимости нет и карты Туре II постепенно уходят с рынка. Отметим, что в накопители для карт Туре II можно устанавливать карты Туре I, тогда как обратное невозможно.

Среди флэш-карт бесспорным лидером по производительности была CF-карта Transcend Ultra Performance 25x CompactFlash 256 Мбайт, которую можно по праву считать эталоном скорострельности современных флэш-накопителей. Скорость последовательной/случайной записи у этой флэш-карты достигает 3.6/0.8 Мбайт/с, скорость чтения - 4,0/3,7 Мбайт/с.

Скорость работы CF-карт замедляется с увеличением объема, что хорошо видно на примере флэш-карт SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт. Двукратный рост емкости приводит к снижению производительности на 30%. за исключением скорости случайной записи, которая выросла в 2.5 раза, - это выглядит довольно странно и неожиданно.

Скоростные характеристики CF-карт так же сильно зависят от производителя. У Kingston CompactFlash 256 Мбайт - низкая скорость записи (последовательная/случайная запись - 1.4/0.3 Мбайт/с), но по скорости чтения она была лидером (4.4/3,8 Мбайт/с). Карта PQI Hi-Speed Compact Flash 256 Мбайт продемонстрировала среднюю производительность в обоих случаях: запись - 2.1/0.7 Мбайт/с, чтение - 3.8/3,3 Мбайт/с. Карты SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт работали очень медленно: запись - 1,1/0,2 и 0,9/0,5 Мбайт/с, чтение - 2,3/2,1 и 1,8/1,7 Мбайт/с. А карта Transcend Ultra Performance 25х CompactFlash 256 Мбайт записывала и считывала данные одинаково хорошо.

Если сравнивать CF-карты с накопителями других типов, то окажется, что флэш-память - совсем на такая медленная, как это принято считать! По производительности самые быстрые образцы флэш-памяти (в качестве эталона возьмем карту Transcend Ultra Performance 25х CompactFlash 256 Мбайт) сравнимы с Iomega Zip 750 Мбайт, а по скорости последовательной записи даже обгоняют этот накопитель более чем в 1,5 раза! По скорости последовательной записи флэш-память обгоняет диски CD-RW в 2 раза, по скорости последовательного чтения - на 10%! Флэш-память выигрывает у МО-дисков по скорости последовательной записи - в 2 раза - и случайного чтения - на 10%, однако отстает по скорости последовательного чтения и случайной записи - на 20%. Флэш-память отстает по скорости последовательной записи от DVD-дисков (при «прожигании» в режиме 4х) - в 1,4 раза.

Отметим, что если CF-карта используется в цифровой фотокамере, то для нее в первую очередь важна скорость последовательной записи - чем она выше, тем быстрее фотокамера вернется в рабочее состояние после «захвата» кадра и «сброса» его на флэш-карту. Впрочем, скорость чтения CF-карты в этом случае тоже важна, правда, не так критична - чем быстрее считываются данные, тем быстрее будет работать фотокамера в режиме просмотра отснятого материала.

SmartMedia. Конструкция карт SmartMedia (SM) чрезвычайно проста. В карте SM нет встроенного контроллера интерфейса и по сути - это одна или две микросхемы флэш-памяти, «упакованные» в пластиковый кожух. Стандарт SM был разработан компаниями Toshiba и Samsung в 1995 г. Интерфейс карт SM - параллельный, 22-контактный, но из них для передачи данных используется только восемь линий.

MultiMedia Card. Карты Multi-Media Card (MMC) имеют 7-контактный последовательный интерфейс, который может работать на частоте до 20 МГц. Внутри пластикового корпуса карты размещается микросхема флэш-памяти и контроллер ММС-интерфейса. Стандарт ММС предложен в 1997 г. компаниями Hitachi, SanDisk и Siemens.

SecureDigital Card. SecureDigi-tal Card (SD) - самый молодой стандарт флэш-карт: он был разработан в 2000 г. компаниями Matsushita, SanDisk и Toshiba. Фактически SD - это дальнейшее развитие стандарта ММС, поэтому карты ММС можно устанавливать в накопители SD (обратное будет неверным). Интерфейс SD - 9-контактный, последовательно-параллельный (данные могут передаваться по одной, двум или четырем линиям одновременно), работает на частоте до 25 МГц. Карты SD оснащаются переключателем для защиты их содержимого от записи (стандартом также предусмотрена модификация без такого переключателя).

USB-флэш-память. USB-флэш-память (USB-память) - совершенно новый тип носителей на флэш-памяти, появившийся на рынке в 2001 г. По форме USB-память напоминает брелок продолговатой формы, состоящий из двух половинок - защитного колпачка и собственно накопителя с USB-разъемом (внутри него размещаются одна или две микросхемы флэш-памяти и USB-контроллер).

Работать с USB-памятью очень удобно - для этого не требуется никаких дополнительных устройств. Достаточно иметь под рукой ПК под управлением Windows с незанятым USB-портом, чтобы за пару минут «добраться» до содержимого этого накопителя. В худшем случае вам придется установить драйверы USB-памяти, в лучшем - новое USB-уст-ройство и логический диск появятся в системе автоматически. Возможно, что в будущем USB-память станет основным типом устройств для хранения и переноса небольших объемов данных.

Что же касается USB-флэш-памяти, то это, несомненно, более удобное решение для переноса данных, чем флэш-карты, - не требуется дополнительный флэш-накопитель. Однако производительность протестированных накопителей этого типа - Transcend JetFlash 256 Мбайт и Transcend JetFlashA 256 Мбайт - ограничивалась низкой пропускной способностью интерфейса USB 1.1. поэтому их показатели в тестах на скорость работы были довольно скромными. Если USB-флэш-память оснастить быстрым интерфейсом USB 2.0, то по «скорострельности» эти накопители, конечно, не уступят лучшим флэш-картам.

Интересно отметить, что по скорости последовательной записи флэш-память превосходит Iomega Zip 750, диски CD-RW и МО-носители и уступает только DVD-дискам. Это лишний раз подчеркивает, что разработчики флэш-памяти в первую очередь стремились увеличить скорость последовательной записи, поскольку флэш-память изначально предназначена для использования в цифровых фотокамерах, где прежде всего важен этот показатель.

В итоге можно заключить, что флэш-память - бесспорный лидер по надежности, мобильности и энергопотреблению среди накопителей небольшой и средней емкости, обладающий к тому же неплохим быстродействием и достаточным объемом (на сегодня на рынке уже доступны флэш-карты емкостью до 2 Гбайт). Несомненно, это очень перспективный тип, однако их широкое использование пока сдерживается высокими ценами.

23 вопрос (Программное обеспечение ПЗУ IBM PC. Программы POST, Boot Loader)

загрузочные устройства (IBM PC)

Загрузочное устройство это устройство, с которого загружается операционная система. Современные BIOS компьютер поддерживает загрузку с различных устройств, как правило, местные жесткий диск (или одной из нескольких разделах на таком диске), оптических дисков, устройств USB (флэш-диск, жесткий диск, оптический привод диска и т.д.), или карта сетевого интерфейса (с использованием PXE). Раньше, менее распространенными загрузочными устройствами включать дисководы гибких дисков, SCSI устройствах, Zip дисков, и LS-120 дисков.

Как правило, BIOS позволяет пользователю настроить порядок загрузки. Если порядок загрузки установлен в положение "Во-первых, привод DVD-вторых, жесткий диск", то BIOS будет пытаться загрузить с диска DVD, и если это не удается (например, из-за отсутствия DVD в привод), она будет пытаться загрузиться с локального жесткого диска.

Например, на компьютере с Windows XP, установленной на жесткий диск, пользователь может установить порядок загрузки к приведенному выше, а затем вставить GNU / Linux Live CD, с тем чтобы попробовать Linux без необходимости устанавливать операционную систему на жесткий диск. Это является примером двойной загрузкой - пользователю выбор, какую операционную систему для запуска после того, как компьютер выполняет свою самотестирования. В этом примере двойной загрузкой, пользователь выбирает, вставляя или вынимая компакт-диск из компьютера, но он является более общим, чтобы выбрать, какую операционную систему для загрузки, выбрав из меню с помощью клавиатуры компьютера. (Обычно F11 или ESC

После запуска, персональный компьютер "S x86 процессор выполняет инструкцию находится в памяти CS: IP FFFF: 0000 в BIOS, который находится на 0xFFFF0 адрес. Эта память места близок к концу 1 Мбайт системной памяти доступна в реальном режиме. Обычно он содержит инструкцию, которая Перейти выполнение переводов на место BIOS запуске программы. Эта программа запускается при включении питания самотестирования (POST) для проверки и инициализации необходимых устройств. BIOS проходит через предварительно настроен список Non-Volatile устройств хранения информации ("Boot Device последовательность"), пока не обнаружит, что является загрузочным. Загрузочные устройства определяется как вывод, который можно читать, а последние два байта первого сектора содержать слова 0xAA55 (также известный как загрузочный подпись).

После того как нашла BIOS загрузочного устройства он загружает загрузочный сектор в шестнадцатеричный сегмента: офсетная адресу 0000:7 C00 или 07c0: 0000 (карты с тем же адресом Ultimate) и передает на исполнение загрузочного кода. В случае с жестким диском, это называется основной загрузочной записи (MBR) и часто не конкретной операционной системы. Код MBR обычной проверки таблицы разделов МБР для раздела, установить в качестве загрузочного (один с флагом активности) Если найден активный раздел, MBR код загружает кода загрузочного сектора от этого раздела и выполняет его. Загрузочный сектор часто операционная система конкретного, однако в большинстве операционных систем, его основная функция заключается в загрузке и исполнять операционную систему ядра, которое продолжается при запуске. Если нет активных разделов, или загрузочный сектор активного раздела является недействительным, MBR может загрузить вторичный загрузчик который будет выбрать раздел (нередко с помощью пользовательского ввода) и загружает загрузочный сектор, который обычно загружает соответствующие ядра операционной системы.

В некоторых системах (в частности, новых Макинтошей) использовать Intel "S собственного EFI. Также Coreboot позволяет компьютеру загрузиться без сверхсложных прошивка / BIOS Постоянно работает в режиме управления системой. Наследие 16-битный интерфейс BIOS требуются определенные x86 операционных систем, таких как Windows XP, Vista, и 7. Однако большинство загрузчиков имеют 16-битную поддержку для этих унаследованных системах BIOS.

В старых компьютерах Windows, особенно те, кто управлял Windows 9x, если чипов BIOS присутствует, то он может или не может показать экран подробные BIOS производитель чипов, авторские права состоялась производитель чипа и идентификатор чипа при запуске. В то же время, она также показывает объем доступной памяти компьютера и других частей кода Отображение информации о компьютере.

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Структура микропроцессора Устройство управления Устройство управления является функционально наиболее сложным устройством ПК. Оно вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки машины. Упрощенная функциональная схема УУ показана на рис. 4.5. Здесь представлены: Рис. 4.5.Укрупненная функциональная схема устройства управления Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции. Регистр команд расположен в интерфейсной части МП, в блоке регистров команд. Дешифратор операций – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов. Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Импульс по выбранному дешифратором операций в соответствии с кодом операции считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов. Узел формирования адреса (находится в интерфейсной части МП) – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП. Кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
  • выборки из регистра-счетчика адреса команды MПП адреса ячейки ОЗУ, где хранится очередная команда программы;
  • выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
  • расшифровки кода операции и признаков выбранной команды;
  • считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
  • считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
  • выборки операндов (по сформированным адресам) и выполнения заданной операции обработки этих операндов;
  • записи результатов операции в память;
  • формирования адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ (рис. 4.6) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Рис. 4.6.Функциональная схема АЛУ Сумматор – вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов; сумматор имеет разрядность двойного машинного слова. Регистры - быстродействующие ячейки памяти различной длины: регистр 1 (Рг1) имеет разрядность двойного слова, а регистр 2 (Рг2) – разрядность слова. При выполнении операций в Рг1 помещается первое число, участвующее в операции, а по завершении операции – результат; в Рг2 – второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может и принимать информацию с кодовых шин данных, и выдавать информацию на них, регистр 2 только получает информацию с этих шин. Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ. АЛУ выполняет арифметические операции (+, -, *, :) только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами. Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам. Микропроцессорная память Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т.е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами – тысячными долями микросекунды). Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях; МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны: от 14 двухбайтных регистров у МП 8086 до нескольких десятков регистров разной длины у МП Pentium . Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур. Интерфейсная часть микропроцессора Интерфейсная часть МП предназначена для связи и согласования МП с системной шиной ПК, а также для приема, предварительного анализа команд выполняемой программы и формирования полных адресов операндов и команд. Интерфейсная часть включает в свой состав адресные регистры МПП, узел формирования адреса, блок регистров команд, являющийся буфером команд в МП, внутреннюю интерфейсную шину МП и схемы управления шиной и портами ввода-вывода. Порты ввода-вывода – это пункты системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами. Всего портов у МП может быть 65536. Каждый порт имеет адрес – номер порта, соответствующий адресу ячейки памяти, являющейся частью устройства ввода-вывода, использующего этот порт, а не частью основной памяти компьютера. Порт устройства содержит аппаратуру сопряжения и два регистра памяти – для обмена данными и обмена управляющей информацией. Некоторые внешние устройства используют и основную память для хранения больших объемов информации, подлежащей обмену. Многие стандартные устройства (НЖМД, НГМД, клавиатура, принтер, сопроцессор и др.) имеют постоянно закрепленные за ними порты ввода-вывода. Схема управления шиной и портами выполняет следующие функции:
  • формирование адреса порта и управляющей информации для него (переключение порта на прием или передачу и др.);
  • прием управляющей информации от порта, информации о готовности порта и его состоянии;
  • организацию сквозного канала в системном интерфейсе для передачи данных между портом устройства ввода-вывода и МП.
Схема управления шиной и портами использует для связи с портами кодовые шины инструкций, адреса и данных системной шины: при доступе к порту МП посылает сигнал по КШИ, который оповещает все устройства ввода-вывода, что адрес на КША является адресом порта, а затем посылает и сам адрес порта. То устройство, адрес порта которого совпадает, дает ответ о готовности, после чего по КШД осуществляется обмен данными.

Все постоянные запоминающие устройства (ПЗУ) можно разделить на следующие группы:

● программируемые при изготовлении (обозначают как ПЗУ или ROM);

● с однократным программированием, позволяющим пользователю однократно изменить состояние матрицы памяти электрическим путем по заданной программе (обозначают как ППЗУ или PROM);

● перепрограммируемые (репрограммируемые), с возможностью многократного электрического перепрограммирования, с электрическим или ультрафиолетовым стиранием информации (обозначают как РПЗУ или RPROM).

Для обеспечения возможности объединения по выходу при наращивании памяти все ПЗУ имеют выходы с тремя состояниями или открытые коллекторные выходы.

{xtypo_quote}В ППЗУ накопитель построен на запоминающих ячейках с плавкими перемычками, изготовленными из нихрома или других тугоплавких материалов. Процесс записи состоит в избирательном пережигании плавких перемычек. {/xtypo_quote}
В РПЗУ запоминающие ячейки строятся на основе МОП-технологий. Используются различные физические явления хранения заряда на границе между двумя различными диэлектрическими средами или проводящей и диэлектрической средой.

В первом случае диэлектрик под затвором МОП-транзистора делают из двух слоев: нитрида кремния и двуокиси кремния (SiN 4 — SiO 2). Было обнаружено, что в сложной структуре SiN 4 — SiO 2 при изменении электрического напряжения возникает гистерезис заряда на границе раздела двух слоев, что и позволяет создавать запоминающие ячейки.

Во втором случае основой запоминающей ячейки является лавинно-инжекционный МОП-транзистор с плавающим затвором (ЛИПЗ МОП). Упрощенная структура такого транзистора приведена на рис. 3.77.
В лавинно-инжекционном транзисторе с плавающим затвором при достаточно большом напряжении на стоке происходит обратимый лавинный пробой диэлектрика, и в область плавающего затвора инжектируются носители заряда. Поскольку плавающий затвор окружен диэлектриком, то ток утечки мал и хранение информации обеспечивается в течение длительного промежутка времени (десятки лет). При подаче напряжения на основной затвор происходит рассасывание заряда за счет туннельного эффекта, т.е. стирание информации.

Приведем некоторые характеристики ПЗУ (табл. 3.1).

Промышленность выпускает большое количество микросхем ПЗУ. Приведем в качестве примера две микросхемы ПЗУ (рис. 3.78).



На схемах использованы следующие обозначения: A i — адресные входы; D i — информационные выходы; CS — выбор микросхемы; СЕ — разрешение выхода.

Микросхема К573РФ5 — это репрограммируемое ПЗУ (РПЗУ) с ультрафиолетовым стиранием, имеющее структуру 2Кх8. По входу и выходу эта микросхема совместима с ТТЛ-структурами. Микросхема К556РТ5 — это однократно программируемая ПЗУ, выполнена на основе ТТЛШ-структур, по входу и выходу совместима с ТТЛ-структурами, имеющая структуру 512бит х8.

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах, DDC и DUC, таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory – память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 3.1.

Рисунок 3.1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 3.2.

Рисунок 3.2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.3.

Рисунок 3.3 Схема многоразрядного ПЗУ (ROM).

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 3.4. Схема масочного постоянного запоминающего устройства (ROM).

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 3.5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ОЗУ). Чтение микросхемы производится сигналом RD.

Рисунок 3.5. Условно-графическое обозначение масочного ПЗУ (ROM) на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах - программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке3.6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 3.6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 3.7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния - диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Структурная схема описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие – вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 - 30 минут.

Количество циклов записи – стирания микросхем EPROM находится в диапазоне от 10 до 100 раз, после чего микросхема РПЗУ выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения на оксид кремния. В качестве примера микросхем EPROM можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В РПЗУ чаще всего хранятся программы BIOS универсальных компьютеров. РПЗУ изображаются на принципиальных схемах как показано на рисунке 3.8.

Рисунок 3.8. Условно-графическое обозначение РПЗУ (EPROM) на принципиальных схемах.

Так как корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи - стирания привели к поиску способов стирания информации из РПЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи - стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких ПЗУ уменьшается до 10 мс. Схема управления для электрически стираемых программируемых ПЗУ получилась сложная, поэтому наметилось два направления развития этих микросхем:

1. ЕСППЗУ (EEPROM) - электрически стираемое программируемое постоянное запоминающее устройство

Электрически стираемые ППЗУ (EEPROM) дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи - стирания. Область применения электрически стираемых ПЗУ - хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР3 и зарубежные микросхемы EEPROM серии 28cXX. Электрически стираемые ПЗУ обозначаются на принципиальных схемах как показано на рисунке 3.9.

Рисунок 9. Условно-графическое обозначение электрически стираемого постоянного запоминающего устройства (EEPROM) на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних выводов микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов - SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH - ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 3.10. Условно-графическое обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 3.11.


Рисунок 3.11. Временные диаграммы сигналов чтения информации из ПЗУ.

На рисунке 3.11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD - это сигнал чтения, A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D - выходная информация, считанная из выбранной ячейки ПЗУ.

4. Выполните операцию сложения в дополнительном коде, представив приведенные слагаемые в двоичном виде:

1) + 45 2) - 45

- 20 + 20

Решение:

1) х 1 = 45 = 0,101101 пр

х 2 = - 20 = 1,010100 пр = 1,101011 обр = 1,101100 доп

+ 1,101100

Ответ: 0,011001 пр = 25 10

2) х 1 = - 45 =1,101101 пр

х 2 = 20 = 0,010100 пр

+ 0,010100

Ответ: 1,100111 доп = 1,011000 обр = 1,011001 пр = - 25 10

Вопрос № 5.

Выполните следующие задания:

1) запишите логическую функцию в СНДФ;

2) минимизируйте логическую функцию с помощью карт Карно;

Похожие публикации