Компьютеры с современный мир

Практическое использование специальных шкал децибел при проверке чувствительности радиоприемников. Коэффициент усиления и чувствительность Предельная чувствительность приемника

Наиболее простой задачей является прием местных станций, сигналы которых достаточно сильны, так что даже простой малоламповый приемник может принять и воспроизвести их с большой громкостью. Значительно труднее принять передачи удаленных радиостанций, от которых к месту приема доходят иногда очень слабые сигналы. Тогда нужен более сложный приемник.

Способность принимать слабые сигналы характеризуется параметрам, называемым чувствительностью приемника . Чем слабее сигналы принимаемой станции, тем более чувствительным должен быть приемник, чтобы принять их.

Чувствительность приемника оценивается тем напряжением сигнала на его входе, при котором на выходе приемника получается установленная для него мощность. Чем меньше требуемое для этого напряжение сигнала, тем чувствительнее приемник. Но напряжение на вход приемника поступает из антенны, в которой приходящими от радиостанций сигналами возбуждается электродвижущая сила (э. д. с.). Естественно, что подаваемое антенной на вход приемника напряжение несколько меньше этой э. д. с., так как часть э. д. с. расходуется в самой антенне (это аналогично тому, что напряжение гальванической батареи, отдаваемое во внешнюю цепь, оказывается всегда меньше э. д. с., развиваемой этой батареей). Поэтому под чувствительностью приемника надо понимать ту величину э. д. с. в антенне, при которой на его выходе получается установленная для него мощность .

Чувствительность измеряется в микровольтах (мкв ). Чем меньше микровольт нужно подать на вход приемника для получения требуемой выходной мощности, тем лучше или, как часто говорят, тем выше его чувствительность. Так как поступающее на вход приемника напряжение сигнала усиливается в различных каскадах приемника и, достигнув необходимой величины, попадает на управляющую сетку выходной лампы, то чувствительность приемника определяется общим усилением всех его каскадов. Поэтому приемник тем чувствительнее, чем больше в нем каскадов усиления.

Чувствительность приемника неодинакова в разных точках диапазона. В зависимости от схемы и конструкции она может быть более равномерной или менее равномерной. На фиг. 1 приведена в виде примера диаграмма, характеризующая чувствительность одного из промышленных приемников. По горизонтальной оси отложены частоты (кгц ), на которых производилось измерение, а по вертикальной - чувствительность (мкв ), причем значения чувствительности отложены сверху вниз. Такой метод построения диаграммы делает ее более наглядной (чем выше расположены точки кривой, тем выше чувствительность приемника).

Если схема приемника проработана недостаточно тщательно и налаживание его произведено не совсем правильно, то чувствительность приемника может оказаться очень неравномерной по диапазону, например высокой на высокочастотном конце поддиапазона и резко уменьшившейся на его низкочастотном конце, или наоборот. Подобная неравномерность явилась бы недостатком приемника, так как у хорошего приемника чувствительность в пределах одного поддиапазона, а еще лучше - по всему диапазону принимаемых частот - должна оставаться более или менее постоянной.

По ГОСТ у приемников 1-го масса чувствительность должна быть на всех диапазонах не хуже 50 мкв, у приемников 2-го класса - не хуже 200 мкв на длинных и средних волнах и не хуже 300 мкв на коротких волнах, у приемников 3-го класса сетевых - не хуже 300 мкв на длинных и средних и не хуже 500 мкв на коротких волнах, у батарейных приемников 3-го класса - не хуже 400 мкв на всех диапазонах.

Чувствительностью радиоприемника называется его способность обеспечивать нормальный прием при малой величине ЭДС или мощности сигнала в антенне. Под нормальным приемом понимают такой, при котором обеспечивается установленный режим работы оконечного аппарата.

Чувствительность оценивается минимальной величиной ЭДС или мощности сигнала в антенне, при которой осуществляется нормальный прием, и измеряется в микровольтах или милливаттах. Следовательно, чем меньше ЭДС полезного сигнала в антенне, при котором получается нормальный прием, тем выше чувствительность.

В зависимости от назначения приемника величина чувствительности может быть от десятых долей микровольт до единиц милливольт или в пределах 10 -9 – 10 -19 Вт. Иногда чувствительность выражают в децибелах относительно одного ватта или милливатта.

Получение высокой чувствительности связано в основном с усилительными свойствами приемника и практически может быть реализовано только при условии, что уровень собственных шумов на выходе приемника меньше уровня сигнала.

Величина допустимого превышения уровня сигнала над уровнем шумов устанавливается в зависимости от характера принимаемых сигналов.

Представим структурную схему РПУ в виде рис.7

Антенна представлена в виде эквивалентного генератора с ЭДС Е А, наводимой полем принимаемого сигнала, а внутреннее сопротивление генератора R А равно сумме сопротивлений излучения и потерь антенны. Сам радиоприемник разделен на две части – линейную и нелинейную. В состав линейной части включены все усилительные и избирательные элементы, стоящие до детектора.

Рисунок 7 – Структурная схема РПУ

Линейной эту часть называют потому, что амплитуда сигнала здесь мала и изменение мгновенных значений его происходит в пределах настолько малого участка характеристики, что нелинейность его не проявляется.

В состав нелинейной части входят детектор и усилитель электрического сигнала с его фильтрами. Здесь амплитуда сигнала обычно значительно больше, чем в додетекторной части. Поэтому необходимо учитывать нелинейность характеристик соответствующих элементов.

На выходе приемника включена нагрузка R н, эквивалентная входному сопротивлению воспроизводящего устройства.

Реальная чувствительность оценивается той наименьшей ЭДС сигнала в антенне Е Аор (или мощностью Р сор), при которой обеспечивается нормальная выходная мощность P N при заданном соотношении сигнал/шум на выходе приемника.

Под нормальной выходной мощностью понимают величину, равную 10% номинальной мощности. Иногда оговаривается нормальное напряжение, величина которого соответствует нормальной мощности на заданном сопротивлении нагрузки:

Заданное соотношение сигнал/шум на выходе приемника определяется видом принимаемого сигнала. Для некоторых случаев необходимое соотношение мощности сигнала к мощности шума приведено в таблице 1.

Таблица 1

Иногда соотношение сигнал/шум задается по напряжению.

где U с, U ш, Р с и Р ш – напряжения и мощности сигнала и шума соответственно на выходе радиоприемника.

Реальная чувствительность Е Аор (или Р сор) неудобна для сравнения радиоприемников с различными трактами усиления электрического сигнала и воспроизводящими устройствами. Кроме того, реальная чувствительность зависит от режима работы детектора и от субъективных свойств оператора, воспринимающего сигнал на выходе приемника. Поэтому, введена предельная чувствительность Е Аоп (или Р соп), которая характеризует только линейную часть радиоприемника. Определяется предельная чувствительность наименьшей ЭДС радиосигнала Е Аоп в антенне или мощностью Р соп, при которых на выходе линейной части соотношение сигнал/шум равно единице

Так же, как ЭДС, мощность сигнала в антенне должна быть независимой от нагрузки, характеризовать только источник сигнала.

Номинальная мощность источника ЭДС – максимальная мощность, которую источник может отдать в нагрузку (иногда ее называют располагаемой мощностью, мощностью, которой источник располагает). Номинальная мощность отдается источником в нагрузку при согласовании – равенстве активных составляющих и компенсации реактивных составляющих внутреннего сопротивления источника ЭДС и сопротивления нагрузки.

Определяя мощность, отдаваемую источником ЭДС в нагрузку при R и =R н, легко показать, что номинальная мощность источника .

Следовательно,

При всех других условиях мощность, отдаваемая в нагрузку, будет меньше номинальной.

Использование для оценки чувствительности приемника номинальной мощности сигнала в антенне позволяет учесть не только его усиление от входа приемника до выхода, но влияние того, как мощность от антенны передается ко входу приемника.

Из определения номинальной мощности вытекает и определение коэффициента усиления номинальной мощности К нр – отношение номинальной мощности на выходе приемника (или любого четырехполюсника) к номинальной мощности источника сигнала.

В случае, когда радиосигналы на входе РПУ достаточно большой величины и не требуется большого их усиления, чувствительность приемника ограничивается усилением его линейного тракта.

Для нормального протекания процесса детектирования на вход детектора должен быть подан сигнал определенной амплитуды U mc =U m вх дет. Если известна величина коэффициента усиления линейной части тракта приемника К о, настроенной на частоту ¦ о, равную несущей частоте принимаемого сигнала ¦ с, то наименьшая ЭДС сигнала в антенне, соответствующая чувствительности приемника,

Обычно Е Ао задается в действующих значениях, а U вх дет - в амплитудных. Этим объясняется введение коэффициента в знаменатель формулы.

Содержание

Чувствительность приемного устройства - это один из самых главных параметров, определяющих потенциальные возможности всей радиостанции в целом. Поэтому представляют большой интерес объективные методы определения и сравнения чувствительности различных приемников.

Самый доступный, а поэтому и самый распространенный способ определения качества приемника - это прослушивание сигналов в эфире. Очевидно, что точность подобных оценок крайне мала, так как уровень сигнала удаленной радиостанции может изменяться в десятки и даже в сотни раз. В случае, если надо сравнить два приемника или подстроить приемник по наилучшему отношению сигнал/шум, удобнее пользоваться источником сигнала, расположенным в пределах прямой видимости. В этом случае можно пренебречь зависимостью сигнала от условий прохождения радиоволны. Подобный маяк можно изготовить самому и расположить его на крыше ближайшего дома, на расстоянии 100-500 м от радиостанции. Мощность маяка должна быть такой, чтобы сигнал от него только в несколько раз превышал уровень шумов приемника. Тогда путем вращения антенны можно всегда подобрать необходимый уровень сигнала. Кроме того, такой источник полезен для постоянного контроля состояния не только приемника, но и антенно-фидерной системы. По маяку также можно проверить, не сбилась ли градуировка указателя поворота антенны, и оценить общую помеховую обстановку в эфире. В силу того, что требуемая мощность маяка очень мала (доли микроватта), его можно сделать достаточно экономичным и в течение длительного времени питать от сухих батарей.

Один из возможных вариантов подобного генератора показан на рис. 29. Генератор выполнен на полевом транзисторе и предназначен для диапазона 144-146 МГц. Вместо кварцевого резонатора на частоту 12 МГц можно также применить резонаторы на любую субгармонику частоты 144 МГц. При этом может потребоваться некоторая коррекция емкости конденсаторов С1 и С2. Конструкция полосового фильтра L1 С4-L2 С6 такая же, как в трансвертере 144/21 МГц. Регулировка сводится к подбору режима с помощью резистора R2 и настройке полосового фильтра по максимуму сигнала. Генератор следует поместить в небольшую, герметически закрываемую или запаиваемую коробочку, снабженную дипольной антенной. Одна половина диполя присоединяется к проходному изолятору, а вторая - к корпусу генератора.

Уровень сигнала надо подбирать перепайкой отводов на линиях L1 и L2 и уменьшением размера антенны. Генератор потребляет ток не более 0,3 мА, поэтому двух батареек от карманного фонаря хватает для непрерывной работы в течение 3 мес. и более.

(рис. 30 - щелкните мышью для получения большого изображения)

На рис. 30 показан генератор для диапазона 430-440 МГц. Схема генератора аналогична схемам, примененным в гетеродинах трансвертеров. Поэтому можно воспользоваться описанной ранее методикой настройки. Генератор работает на третьей механической гармонике

кварцевого резонатора Пэ1. Сигнал с частотой 432 МГц выделяется с помощью полосового фильтра, конструкция которого взята из трансвертера 432/21 МГц. Аналогично может быть изготовлен генератор для диапазона 1296 МГц. Для этого надо использовать соответствующий выходной фильтр и применить более высокочастотный транзистор. Применение подобных вспомогательных источников сигнала позволяет достаточно объективно сравнить чувствительность двух приемников, однако в конечном счете каждого радиолюбителя интересует не относительная, а абсолютная оценка качества имеющегося приемника. Как уже указывалось, наиболее универсальным параметром, позволяющим характеризовать чувствительность приемника, является коэффициент шума. Для измерения коэффициента шума необходимо иметь калиброванный источник шумового сигнала. В качестве такого источника нашел широкое применение ламповый диод, работающий в режиме насыщения анодного тока.

Промышленностью выпускается специальный диод типа 2Д2С, пригодный для шумовых измерений в диапазоне до нескольких сотен мегагерц. Основное достоинство подобного источника заключается в том, что имеется однозначная зависимость между интенсивностью генерируемого шума и анодным током диода. Эта зависимость описывается простым выражением:

N = 20,5I o R kT 0 , где N - мощность шума на единицу полосы пропускания, Вт/Гц; I 0 - анодный ток, A; R -сопротивление нагрузки, Ом; k - постоянная Больцмана; T 0 - температура окружающей среды (произведение kTo равно мощности тепловых шумов активного сопротивления, нагретого до температуры T 0 ); 1 kT 0 = 4-10~ 21 Вт/Гц; 20,5 - коэффициент, имеющий размерность 1/В.

Обычно при шумовых измерениях в качестве единицы используется 1 kT 0 . Интенсивность шума в таких единицах для сопротивления нагрузки шумового диода 75 Ом описывается простым соотношением: F= 1,5I , где I - ток в миллиамперах. Аналогично для сопротивления нагрузки 50 Ом: F= I .

Видно, что миллиамперметр, измеряющий анодный ток шумового диода, может быть отградуирован непосредственно в единицах kT 0 .

Чувствительность приемника измеряется с помощью шумового генератора следующим образом. Генератор подключают ко входу приемника и с помощью ручной регулировки усиления устанавливают некоторый уровень шума на выходе УНЧ. Приемник должен работать в режиме приема телеграфных или SSB сигналов при отключенной АРУ. Если в приемнике есть регулировка полосы пропускания, то ее надо поставить в положение максимальной полосы. Индикатором выхода может служить тестер или любой другой прибор, предназначенный для измерения переменного напряжения.

Если в приемнике отсутствует режим приема телеграфных сигналов, то вольтметр надо подключить к выходу УПЧ.

После того как на индикаторе выхода установлен некоторый уровень шума, включают питание шумового диода и подбирают такой анодный ток, при котором произойдет удвоение мощности выходного сигнала (показания вольтметра должны увеличиться в 1,41 раза). Это будет означать, что неизвестная мощность шумов, приведенная ко входу приемника, сравнивается с известной мощностью шумового генератора. При этом полезно помнить, что мощность шумов, приведенная ко входу, в данном случае складывается из собственных шумов приемника и тепловых шумов, которые генерируют активное сопротивление, входящее в состав диодного генератора. Таким образом, даже в идеальном - приемнике, в котором собственные шумы вообще отсутствуют, мощность шумов, приведенная к входу, в данном случае равна 1 kT 0 . Если же надо оценить собственные шумы приемника, то из полученной в результате измерений цифры надо отнять единицу. Например, у приемника, имеющего коэффициент шума 1,8, собственная мощность шумов составляет 0,8 kT 0 .

Описанную ранее методику измерений можно несколько усовершенствовать. Дело в том, что на практике неудобно отслеживать по стрелочному прибору увеличение напряжения в 1,41 раза. При этом или каждый раз надо рассчитывать значение, которое надо получить при включении генератора, или каждый раз устанавливать начальное напряжение на заранее нанесенную на шкале риску. Значительно удобнее ввести в измерительную цепь делитель, подключаемый одновременно с подачей анодного напряжения на шумовой диод. Делитель надо настроить таким образом, чтобы при его подключении напряжение, поступающее на индикатор выхода, уменьшалось в 1,41 раза. При включении генератора это уменьшение компенсируется соответствующим увеличением шума приемника.

Схема измерителя коэффициента шума показана на рис. 31. Измеритель состоит из шумового генератора, измерительной схемы и блока питания. Прибор работает следующим образом. В начальный момент, когда кнопка Кн1 отжата, контакт Р1/1 разомкнут и питание на диод Л1 не поступает. Шумовой сигнал с выхода приемника поступает на гнездо Ш1 >и далее через эмиттерные повторители (T1, Т2) и выпрямитель (Д12-Д15) на стрелочный индикатор ИП2. При нажатой кнопке включается реле Р1 и на диод Л1 поступает анодное напряжение 120-150 В. Ток диода можно регулировать переменным резистором R1. Одновременно с этим контакт Р1/2 подключает нижнее плечо делителя напряжения, который обеспечивает ослабление шумового сигнала на 3 дБ.

Настройка прибора сводится к регулировке делителя с помощью подстроечного резистора R10. Для этого на гнездо Ш1 надо подать синусоидальный сигнал и по вольтметру, подключенному к точке а, добиться, чтобы при нажатии кнопки выходное напряжение уменьшалось в 1,41 раза. Конструкция измерителя не имеет особенностей. Важно только обеспечить минимальную длину выводов резистора R4 и конденсаторов С5 и С6. При этом во избежание внешних наводок желательно снабдить диод Л1 отдельным экраном.

Дроссели L1 и L2 имеют по 20 витков провода ПЭВ2-0,64. Диаметр каркаса 4-5 мм. Прибор ИП1 - миллиамперметр со шкалой 5-10 мА, ИП2 - микроамперметр 50-200 мкА. Реле Р1 типа РЭС-9. Вместо диодов Д9, Д10 можно применить газоразрядный стабилитрон СГ1П.

Процедура измерения коэффициента шума данным прибором очень проста. Нажимая и отжимая кнопку Кн1, надо с помощью резистора R1 добиться неизменных показаний стрелочного индикатора ИП2. Коэффициент шума отсчитывается по миллиамперметру ИП1. С помощью прибора можно легко найти оптимальное положение элементов настройки входной цепи приемника. Для этого надо нажимать кнопку Кн1 с периодичностью 0,5-1 с и, подстраивая входную цепь, следить по индикатору ИП2 за изменением коэффициента шума. Прибор пригоден для абсолютных измерений коэффициента шума в KB диапазонах, а также в диапазонах 144 и 432 МГц. В диапазоне 1296 МГц шумовой генератор дает большую погрешность и годится только для относительных измерений.

(рис. 31 - щелкните мышью для получения большого изображения)

В.Ефремов

В журнале "Ремонт & Сервис" ранее рассматривались общие вопросы построения специальных шкал децибел и проблемы, возникающие при переходе от абсолютных значений к децибельной шкале и наоборот . В качестве практического примера была приведена специальная шкала, часто используемая при проведении измерений сигналов низких частот на нагрузке сопротивлением 600 Ом.

В современной высокочастотной технике большинство генераторов сигналов, предназначенных для проверки чувствительности радиоприемных устройств (РПУ), рассчитаны на работу с 50-омной согласованной нагрузкой и на подключение 75-омной нагрузки через специальные переходные устройства. Уровень ВЧ-напряжения на выходе генератора устанавливается либо ступенями, либо плавно, а шкалы выходного напряжения при этом могут иметь различную градуировку в зависимости от типа генератора. Чувствительность приемников ранее выражали в микровольтах, а в последнее время стали использовать для этого специальные шкалы децибел. В связи с этим на практике иногда возникают трудности, связанные с быстрым переводом и определением конкретных численных значений в различных шкалах.

В литературе рассмотрены высококлассные универсальные приборы, предназначенные для проверки чувствительности РПУ. Они позволяют устанавливать уровни ВЧ-напряжения на выходе и производить перевод их численных значений в различные шкалы автоматически. К сожалению, большинству мелких предприятий, занятых ремонтом электронной аппаратуры, они пока недоступны. Более того, им часто приходится пользоваться приборами, произведенными достаточно давно, но до сих пор отвечающими необходимым техническим требованиям при проведении периодических проверок. К таким приборам можно отнести, например, широко распространенный высокочастотный генератор сигналов Г4-107. Выходное напряжение этого генератора на согласованной нагрузке 50 Ом в режимах НГ и ЧМ можно регулировать от 1 В до 1 мкВ и в режимах АМ и ИМ от 0,5 В до 0,5 мкВ. Регулировка производится дискретно и плавно в пределах каждой ступени. Шаг ступенчатой регулировки равен 1 дБ. При этом шкала ступенчатого аттенюатора проградуирована в децибел-вольтах (дБВ). Он (аттенюатор) позволяет устанавливать уровень выходного ВЧ-напряжения от 0 до -119 дБ. Кроме этого, с помощью внешнего аттенюатора можно дополнительно уменьшить уровень напряжения на 20 дБ, т.е. минимальный уровень довести до -139 дБ.

При практической работе с генератором и определении чувствительности РПУ, для перевода уровня выходного сигнала дБВ в мкВ необходимо использовать две специальные таблицы, которые даются в технической документации . При пользовании ими возникают неудобства, связанные с переводом численных значений дБВ в мкВ и наоборот, что особенно заметно в верхней части таблиц, где значения напряжений в мкВ представлены в виде чисел со степенями. Кроме этого, на практике почти всегда приходится использовать внешний аттенюатор, так как чувствительность современных РПУ может быть выше 1 мкВ. Уровень выходного сигнала генератора при этом будет ниже -119 дБ. Прямой перевод уровней ниже этого значения в прилагаемых таблицах вообще не предусмотрен.

Уровни выходного сигнала в дБВ расположены в центральной части таблиц. Им соответствуют значения в единицах, указанных стрелками, т.е. в мВ вверху и в мкВ внизу таблицы. При этом для наглядности соответствующие ряды имеют одинаковое цветовое оформление. Такие же таблицы можно изготовить для других приборов, имеющих ступенчатые аттенюаторы с подобными шкалами. Уровни менее 0,1 мкВ округлены до более реальных с практической точки зрения величин.

Как уже было отмечено выше, в последнее время в технической документации и в литературе уровень ВЧ-сигнала часто указывают в децибельных шкалах. Так, чувствительность РПУ указывают в дБмкВ. Нулевой уровень в этом случае соответствует напряжению ВЧ-сигнала 1 мкВ при сопротивлении нагрузки 50 Ом. Переход к значениям уровня сигнала в мкВ или мВ для этой шкалы можно производить по табл. 1б.



Широкое распространение в радиотехнических измерениях получила специальная шкала дБм. Нулевой уровень этой специальной шкалы соответствует мощности ВЧ-сигнала 1 мВт, рассеянной на 50-омной резистивной нагрузке. При этом, как и в предыдущих случаях, уровни сигнала ниже этого значения будут иметь отрицательный знак. Выразить уровень ВЧ-сигнала в дБм можно, используя одно из математических выражений:

При проведении радиотехнических измерений на практике перевод уровня ВЧ-сигнала из мкВ и мВ в дБм удобно осуществлять также с помощью специальных диаграмм или таблиц. Диаграммы, приводимые в литературе , дают наглядное представление о соотношениях между различными шкалами, но, к сожалению, не позволяют определить точное числовое значение уровня сигнала. Табл. 3 предназначена для перевода уровней ВЧ-сигналов, выраженных в мВ и мкВ, в дБм или наоборот.


Дискретность и числовые значения уровней, представленных в мВ и мкВ, соответствуют табл. 1, т.е. подходят для работы с генератором Г4-107 и другими приборами, имеющими подобную шкалу уровней. В центральной части табл. 3 приведены значения уровней сигналов в дБм, перевод которых осуществляется так же, как и в предыдущих таблицах. Практическое использование приводимых таблиц, в особенности табл. 1 и 3, не ограничивается только приведенными выше примерами.

Литература
1. В. Ефремов. Практическое использование специальных шкал децибел. Ремонт & Сервис, 2000, № 1. с. 55-56.

2. А. Дубинин. Сервис-мониторы IFP-7550. Ремонт&Сервис, 1999, № 11, с. 55-56.

3. Генератор сигналов высокочастотный Г4-107. Техническое описание и инструкция по эксплуатации.

4. Э. Ред. Справочное пособие по высокочастотной схемотехнике, М.: Мир, 1990, с. 171.

Чувствительность приемника характеризует его способность принимать слабые сигналы. Количественно чувствительность оце­нивают минимальной ЭДС модулированного сигнала в экви­валенте приемной антенны или минимальной напряженностью по­ля; минимальной мощностью сигнала на входе приемни­ка. Первый случай характерен для приемников НЧ-ОВЧ, работа­ющих с открытой антенной: минимальная напряженность поля используется для оценки чувстви­тельности при применении магнитных и штыревых антенн; второй случай характерен преимущественно для приемников УВЧ и СВЧ.

Различают:

1) Чувствительность, ограниченное усилением.

Характерна для приемников, принимающих достаточно сильные сигналы, когда помехи слабо влияют на прием. Она определяется при заданной выходной мощности. Для приемников аналоговых сигналов различают номинальную и нормальную выходные мощности.

Номинальная мощность - максимальная выходная мощность, соответствующая 100 процентной глубине модуляции входного сигнала при коэффициенте нелинейных искажений меньше заданной нормы.

Нормальная мощность соответствует 30 процентной глубине модуляции и составляет 10 процентов от номинальной. В этом заключается проблема АМ видов модуляции.

2) Реальная чувствительность.

Учитывает влияние собственных его шумов и определяется минимальным уровнем сигнала на входе приемника при заданном превышении его над шумами на выходе приемника.

h-отношение сигнал/шум в выходном сигнале.

Чувствительность приемника зависит от его коэффициента усиления К, уровня собственных шумов , приведенных ко входу антенны, и требуемого превышения h 2 B ых­. Рассмотрим влияние этих факторов на чувствительность прием­ника AM сигналов, подключенного к эквиваленту открытой ан­тенны. Коэффициент усиления приемника:

K=U с вых /mU А C ,

где m - коэффициент модуляции сигнала; U А C - эффективное напряжение несущей частоты сигнала в эквиваленте антенны. Чувствительность, ограниченная усилением, с ростом К повышается.



Для определения реальной чувствительности необхо­димо определить, как влияет К на уровень шумов на выходе. Реальный шумящий приемник заменим нешумящим прием­ником с генератором собственных шумов U ш.пр, приведенных к его входу, который вместе с генератором шумов эквивалента антен­ны U ш э.А образует генератор суммарного шумового напряжения U ш.А.∑ ,приведенного к эквиваленту антенны с эффективным напряжением в полосе пропускания приемника.

U ш.э.А =

Если U ш.вых =К U ш.А.∑ , то U А0/ U ш.А.∑ = U С вых/ m U ш.вых. При заданном h вых =(U с /U ш) вых в эквиваленте антенны необходимо обеспечить превышение сигнала h A =U A 0 / U ш.А.∑ . Отсюда реальная чувствительность U A 0 P ≥h A U ш.А.∑ .

Реальная чувствительность не зависит от K и определяется собственными шумами приёмника.

3) Пороговая чувствительность . Определяется уровнем входного сигнала при n 2 =1

Факторы, влияющие на чувствительность:

1) Коэффициент усиления аналоговой части К ус

2) Суммарное напряжение шума антенны U m A ∑

3) h 2 вых допустимое соотношение сигнал/шум.

Рассмотрим их влияние на чувствительность АМ приемника:

U вых = К ус *m*U ∆ c

Рассмотрим модель приемника с шумами:

U ш. пр.
Нешумящий приёмник
Z A
U МА
U СА
U вых
U

U ША∑ =

U Швых = К ус* U ША∑ следовательно:

U реальной чувствительности =h A * U ША∑

Лекция 6.

Тепловые шумы

Любая цепь, имеющая омическое сопротивление является источником теплового шума. Это обусловлено увеличением количества носителей зарядов (электронов).

шумовой поток

Сопротивление,

B-постоянная Больцмана,

T-температура в Кельвинах,

П-полоса в Гц

Шумы связаны только с активным сопротивлением, так как связаны с тепловыми флуктуациями электронов.

Единица измерения мощности в радиотехнических системах:

dBm-1 дб/1 мВт на нагрузке R=50 Ом

абсолютный уровень шума в 50 Омных системах равен -174 dBm/Гц.

Рассмотрим резонансный контур:

При комнатной температуре напряжение можно посчитать с помощью эмпирической формулы:

в этой формуле:

Шумовая температура.

Роль тепловых шумов в антенне не значительна. В основном источником шума в ней являются внешние источники ЭМ излучений. Вклад внешних источников шума в антенну оценивается как:

A -шумовая температура антенны - это температура, до которой нужно нагреть эквивалент антенны с сопротивлением R A чтобы его уровень тепловых шумов равнялся уровню шумов, измеренных со входа антенны. Т А позволяет сравнивать антенны. Источником шума в приемнике помимо активных сопротивлений являются транзисторы. Они характеризуются шумовым сопротивлением:

Для полевых транзисторов составляет десятки Ом.

Т ш =(Ш-1)Т,

Шумовая температура характеризует собственные шумы четырехполюсника, пересчитанные ко входу. Эта величина является тепловым эквивалентом собственных шумов четырехполюсника и показывает, на сколько градусов должен быть нагрет эквивалент антенны, чтобы вызванные им шумы на выходе равнялись собственным шумам. Понятие шумовой температуры удобно применять к малошумящим усилителям, коэффициент шума которых близок к 1. Например, при Ш=1.1 имеем Т э 30К. Шумовая температура многокаскадного устройства:

Коэффициент шума и шумовая температура устройства определяются свойствами главным образом первых четырехполюсников. Влияние последующих каскадов тем меньше, чем больше усиление по мощности предшествующих. Чтобы коэффициент шума был мал, необходимо первые каскады выполнять малошумящими и с большими коэффициентами передачи по мощности.

Полевой транзистор.

=(0.6…0.75)/s

S - крутизна управляемой характеристики.

Любой источник сигнала является источником шума. Мощность сигнала, который отдает источник в согласованную нагрузку называют номинальной(макс) .

Номинальная мощность шумов источника не зависит от сопротивления источника. Для оценки шумовых свойств источника используют отношение средней мощности сигнала к средней мощности шумов. При прохождении сигнала через четырехполюсник отношение сигнал/шум изменяется (уменьшается) в следствие добавления к шумам источника сигнала собственных шумов четырехполюсника.

Шумовые свойства в четырехполюснике описывает коэффициент шума , который показывает во сколько раз уменьшается отношение сигнал/шум на выходе по сравнению с отношением сигнал/шум на входе.

Ш-коэффициент шума. Является отношением

К р -коэффициент передачи

1) для идеального нешумящего четырехполюсника Ш=1.Для шумящего Ш>1.

2) Характеристику коэффициента шума можно использовать только для нелинейных устройств.

3) Для пассивных четырехполюсников, при согласовании их с источником сигнала коэффициент шума Ш=1/К р.

Пример:

K p
50 Ом

Найти спектральную плотность мощности на выходе четырехполюсника.

Для удобства оценки вклада шума каждого каскада приёмника в уровень шума на входе, все шумы относят ко входу приёмника, считая, что сам приёмник не шумит, а лишь усиливает шумы.

Лекция 7.

Шумовая чувствительность радиоприемного устройства (чувствительность, ограниченная внутренними шумами) – величина, характеризующаяся минимальной необходимой мощностью сигнала в антенне, при которой на выходе линейного тракта обеспечивается заданное отношение сигнал/шум. Линейный тракт ПРМ заканчивается перед демодулятором.

Понятием коэффициент шума можно пользоваться лишь для линейного устройства; в приемнике- это тракт до детектора. Коэффициент шума пассивного четырехполюсника (например антенного фидера) при согласовании его с источником сигнала и нагрузкой определяется коэффициентом передачи по мощности

Ш=1/К р - коэффициент шума

При потерях в пассивной цепи К р <1, Ш>1

Для сравнения шумов с сигналом на выходе удобно относить все шумы ко входу, полагая, что сам приемник не шумит, а лишь усиливает входные шумы.

Найдем коэффициент шума линейного тракта из последовательно соединенных четырехполюсников, каждый из которых характеризуется коэффициентом передачи по мощности К р i и коэффициентом шума Ш i . Предположим, что коэффициент рассогласования η 1 , η 2, … η n на стыках четырехполюсников известны

Мощность шумов первого четырехполюсника на выходе:

Шумы каждого последовательного четырехполюсника усиливаются всеми каскадами, кроме предыдущих. В конечном итоге получим:

K p прм.
Z A
Е A
Z н



t А - относительная шумовая температура




.

- выражение для расчета чувствительности приемника по известному коэффициенту шума ПРМ, полосе приема, П, волновому сопротивлению антенного входа r a , относительной шумовой температура антенны t A .

Задача: найти чувствительность 50 Омного приемника с полосой пропускания 20 кГц, отношение сигнал/шум на выходе - 4 раза(по напряжению), коэффициент шума равен 4, T=300K, 4kT=1.6*10 20.

Ответ: e=0.5 мкВ

113 dBm-0.5 мкВ àх=20lg =-113 dBm

Похожие публикации