Компьютеры с современный мир

Проектирование программного обеспечения. Диаграммы компонентов - учебная и научная деятельность анисимова владимира викторовича Диаграмма компонентов обозначение элементов для построения

Диаграмма компонентов– диаграмма физического уровня, которая служит для
представления программных компонентов и зависимостей
между ними.
Диаграмма компонентов разрабатывается для следующих
целей:
Визуализация общей структуры исходного кода
программной системы.
Спецификация исполнимого варианта программной
системы.
Обеспечение многократного использования отдельных
фрагментов программного кода.
Представление концептуальной и физической схем баз
данных.

Компонент (component)

– элемент модели, представляющий некоторую модульную
часть системы с инкапсулированным содержимым,
спецификация которого является взаимозаменяемой в его
окружении.
Имя экземпляра компонента записывается аналогично имени
линии жизни на диаграммах взаимодействия в следующем
формате (БНФ):
<имя-экземпляра-компонента>::=[<собственное-имякомпонента>] [‘:’<имя-типа>],
при этом собственное имя компонента записывается со
строчной буквы, а в качестве имени экземпляра компонента
должен присутствовать хотя бы один терм.

Примеры изображения простого компонента и компонента с интерфейсами

IDialog
«component»
Заказ
ISe ns or
IApplication
«component»
Контролле р

Примеры изображения компонента в нотации черного и белого ящика

«component»
Заказ
«provided interf aces»
Мест онахождениеТов ара
Сопров ождение
«required interf aces»
Заказыв аемыйТов ар
Клиент
«component»
Заказ
«provided interf aces»
Мест онахождениеТов ара
Сопров ождение
«required interf aces»
Заказыв аемыйТов ар
Клиент
«realizations»
Заголов окЗаказа
Ст рокаТов ара
«artifacts»
Заказ.jar

Интерфейсы

Предоставляемый интерфейс (provided interface) –
интерфейс, который компонент предлагает для своего
окружения.
Требуемый интерфейс (required interface) – интерфейс,
который необходим компоненту от своего окружения для
выполнения заявленной функциональности, контракта или
поведения.
Заказывае мый
Товар
«component»
Товар
Заказывае мый
Товар
Сопровож дение
Сче т-фактура
«component»
Заказ
Клие нт
ЗаголовокЗаказа
заказ
элемент
1
*
СтрокаТовара
М е стонахож де ние
Товара

Представление интерфейсов в форме символа классификатора с отношениями зависимости и реализации

«interface»
Заказывае мый
Товар
«use»
найт иПоИ мени()
задат ьКоличеств о()
получит ьДет али()
«component»
Заказ
«interface»
Ме стонахож де ние Товара
задат ь()
изменит ь()
получит ьДет али()

Порты

Порт определяет различимую точку взаимодействия между
компонентом и окружающей его средой или между
компонентом и его внутренними частями
Наличие имени у порта не является обязательным
При отсутствии имени порта его тип ассоциируется с типом
интерфейса, с которым связан порт.
Заказывае мый
Товар
«component»
Заказ
Клие нт
ЗаголовокЗаказа
заказ
Сопровож де ние
элемент
1
*
СтрокаТовара
Ме стонахож де ние
Товара

Собирающий соединитель (assembly connector)

– соединитель, который связывает два компонента в
контексте предоставляемый и требуемых сервисов.
Сопровож де ние
Сопровож де ние
«component»
Заказ
Заказывае мыйТовар
«component»
:Заказ
Заказывае мыйТовар
Заказывае мыйТовар
Заказывае мыйТовар
«component»
Товар
«component»
:Товар

10. Пример диаграммы компонентов с собирающими соединителями для одинаковых интерфейсов

:Отме не нныйЗаказ
М е стонахож де ние
М е стополож е ние
Товара
:Склад
Клие нт
Клие нт
Че лове к
:Заказ
:Физиче ское
Лицо
М е стополож е ние
Организация
Сопровож де ниеЗаказывае мый
:Поставщик
:Компания
Товар
Заказывае мый
Сопровож де ние
Товар
:Се рвис
:Товар

11. Делегирующий соединитель (delegation connector)

– соединитель, который связывает внешний контракт компонента с
реализацией этого поведения внутренними частями этого
компонента.
Делегирующий соединитель выполняет одну из следующих задач:
Передача сообщений или сигналов, поступающих в порт
компонента извне, для обработки в некоторую внутреннюю
часть компонента или другой порт.
Передача сообщений или сигналов, поступающих из некоторой
внутренней части компонента, для обработки во внешний порт
компонента.
М е стонахож де ние
Товара
«component»
Заказ
:ЗаголовокЗаказа
:СтрокаТовара
Клие нт

12. Пример внутренней структуры экземпляра компонента

Ме стонахож де ние
Товара
«component»
:М агазин
«delegate»
Ме стонахож де ние
Товара
«component»
:Заказ
Клие нт
Клие нт
«component»
:Физиче ское
Лицо
Сче т
Заказывае мый
Товар
Заказывае мый
Товар
«component»
:Товар
«delegate»
Сче т

13. Пример отношений зависимости между компонентом

Отме не нныйЗаказ
Физиче ское
Лицо
Склад
Заказ
Поставщик
Компания
Се рвис
Товар

14. Отношения зависимости на диаграмме компонентов с интерфейсами

Ме стонахож де ние
Товара
Че лове к
Клие нт
Физиче ское
Лицо
Заказ
Ме стополож е ние Сопровож де ние
Заказывае мый
Товар
Поставщик
Сопровож де ние
Се рвис
Заказывае мый
Товар
Товар
Организация
Компания

15. Реализация (realization)

– специализация отношения зависимости для связи
компонентов с классификаторами, которые реализуют
функциональность этого компонента
Реализация компонента может быть дополнительно помечена
стереотипом «implement»
«component»
Заказ
<>
Заголовок
Заказа
<>
Строка
Товара

16. Изображение графических стереотипов компонентов Г.Буча

Dialog.dll
Inde x.htm l
Conte xt .hlp
M ain.cpp

17. Графические стереотипы компонентов Дж. Коналлена

Серверная страница представляет Web-страницу,
содержащую выполняемые сервером сценарии.
Эти сценарии могут взаимодействовать с серверными
ресурсами, такими как базы данных, бизнес-логика и внешние
системы.
Операции реализуемых компонент классов являются
функциями сценария, а их атрибуты - переменными,
видимыми в пределах этой страницы.
<>

18. Клиентская страница

<>
Представляет Web-страницу в формате HTML, а также
данные, элементы интерфейса и даже бизнес-логику.
Клиентские страницы отображаются клиентскими броузерами
и могут содержать сценарии, которые интерпретируются
броузером.
Операции клиентской страницы могут соответствовать
функциям, содержащимся в дескрипторах сценария
страницы.
Атрибутам клиентской страницы соответствуют объявленные
в дескрипторах сценария переменные, которые доступны
любой функции в пределах этой страницы.

19. Форма

<
>
Является набором полей ввода и представляет собой часть
клиентской страницы.
Форма преобразуется непосредственно в дескриптор HTML
.
Атрибуты формы могут представлять поля ввода, текстовые
поля, переключатели, флажки, скрытые поля формы HTML.
С формой не связано никаких операций, поскольку их нельзя
в ней инкапсулировать.
Любые операции взаимодействия с формой являются
свойствами содержащей ее страницы.

20. Набор фреймов

<>
Представляет собой контейнер, состоящий из нескольких
Web-страниц.
Прямоугольная область просмотра делится на несколько
фреймов.
Каждый фрейм может быть связан с одним объектом со
стереотипом «target», однако это необязательно.
Содержимым фрейма может быть Web-страница или другой
фрейм. Набор фреймов преобразуется непосредственно в
набор фреймов Web-страницы и дескриптор HTML .

21. Цель

<>
Представляет собой именованную область окна броузера, в
которой могут отображаться Web-страницы.
Имя цели соответствует имени целевого объекта.
Обычно целью является один из фреймов набора.
Однако целью может быть и новое окно броузера. Для цели
может быть задано место назначения, где будет отображена
новая Web-страница.
Имя цели должно быть уникальным для каждого клиента
системы.

22. Web-страница

<>
Броузер может запрашивать Web-страницу по ее имени.
Этот компонент при необходимости может содержать
клиентские или серверные сценарии.
Обычно web-страницы являются текстовыми файлами, доступ
к которым можно получить через Web-сервер.
Однако они могут быть также компилируемыми модулями,
загружаемыми и запускаемыми Web-сервером.
В любом случае при доступе к такой странице, хранящейся в
файле или исполняемой Web-сервером, она генерирует
документ в формате HTML, который отправляется в ответ на
запрос броузера.

23. JSP и сервлет

Этот компонент представляет
Web-страницы, реализующие
код JSP серверной части приложения. Этот стереотип
применим лишь к приложениям,
в которых используется
технология Java Server Pages.
Этот компонент представляет
сервлет Java. Стереотип
применим лишь к приложениям,
поддерживающим сервлеты
компании Sun.
< page >>
<>

24. Самостоятельное задание №8

Выполнить текущее тестирование: вопросы 34-36
Разработать диаграмму компонентов для ATM
Изобразить следующие компоненты: Главная
программа, Программа обслуживания банкомата,
Transaction, Устройства банкомата.
Интерфейс IATMBank
Поместить на диаграмму все классы, представленные
на диаграмме классов
Изобразить отношения между ними

Этот тип диаграмм предназначен для распределения классов и объектов по компонентам при физическом проектировании системы. Часто данный тип диаграмм называют диаграммами модулей.

Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули, показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.

Компонент (component) - физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.

Для более наглядного изображения компонентов были предложены и стали общепринятыми следующие графические стереотипы:

Во-первых, стереотипы для компонентов развертывания, которые обеспечивают непосредственное выполнение системой своих функций. Такими компонентами могут быть динамически подключаемые библиотеки (рис. 12, а), Web-страницы на языке разметки гипертекста (рис. 12, б) и файлы справки (рис. 12, в).

Во-вторых, стереотипы для компонентов в форме рабочих продуктов. Как правило – это файлы с исходными текстами программ (рис. 12, г).


Рис. 12. Варианты графического изображения компонентов на диаграмме компонентов.

Эти элементы иногда называют артефактами , подчеркивая при этом их законченное информационное содержание, зависящее от конкретной технологии реализации соответствующих компонентов. Более того, разработчики могут для этой цели использовать самостоятельные обозначения, поскольку в языке UML нет строгой нотации для графического представления артефактов.

Другой способ спецификации различных видов компонентов - указание текстового стереотипа компонента перед его именем. В языке UML для компонентов определены следующие стереотипы:

<> (файл) – определяет наиболее общую разновидность компонента, который представляется в виде произвольного физического файла.

<> (исполнимый) – определяет разновидность компонента-файла, который является исполнимым файлом и может выполняться на компьютерной платформе.

<> (документ) – определяет разновидность компонента-файла, который представляется в форме документа произвольного содержания, не являющегося исполнимым файлом или файлом с исходным текстом программы.

<> (библиотека) – определяет разновидность компонента-файла, который представляется в форме динамической или статической библиотеки.

<> (источник) – определяет разновидность компонента-файла, представляющего собой файл с исходным текстом программы, который после компиляции может быть преобразован в исполнимый файл.

<

> (таблица) – определяет разновидность компонента, который представляется в форме таблицы базы данных.

Интерфейсы

Различают два способа связи интерфейса и компонента. Если компонент реализует некоторый интерфейс, то такой интерфейс называют экспортируемым или поддерживаемым , поскольку этот компонент предоставляет его в качестве сервиса другим компонентам. Если же компонент использует некоторый интерфейс, который реализуется другим компонентом, то такой интерфейс для первого компонента называется импортируемым. Особенность импортируемого интерфейса состоит в том, что на диаграмме компонентов это отношение изображается с помощью зависимости.

На диаграмме компонентов могут быть также представлены отношения зависимости между компонентами и реализованными в них классами. Эта информация имеет значение для обеспечения согласования логического и физического представлений модели системы. Разумеется, изменения в структуре описаний классов могут привести к изменению этой зависимости. Ниже приводится фрагмент зависимости подобного рода, когда исполнимый компонент Control .exe зависит от соответствующих классов


Рис. Графическое изображение зависимости между компонентом и классами.

В этом случае из диаграммы компонентов не следует, что классы реализованы данным компонентом. Если требуется подчеркнуть, что некоторый компонент реализует отдельные классы, то для обозначения компонентa используется расширенный символ прямоугольника. При этом прямоугольник компонентa делится на две секции горизонтальной линией. Верхняя секция служит для записи имени компонентa и, возможно, дополнительной информации, а нижняя секция – для указания реализуемых данным компонентом классов

Язык UML - это графический язык моделирования общего назначения, предназначенный для спецификации, визуализации, проектирования и документирования всех артефактов, создаваемых при разработке программных систем.

Существует много хороших книг в которых описано в деталях про UML (местами даже очень подробно), мне хотелось бы собрать в одном месте основные понятия про диаграммы, сущности и связи между ними для быстрого вспоминания, что-то наподобие шпаргалки.

В заметке используется материалы из книжек: Иванов Д. Ю., Новиков Ф. А. Унифицированный язык моделирования UML и Леоненков. Самоучитель по UML .

Для начала определимся с редактором. Под Linux я перепробовал разные UML-редакторы, больше всего мне понравился UMLet , хоть он и написан на Java но шевелится весьма проворно и большинство заготовок сущностей в нем есть. Еще есть ArgoUML кроссплатформенный UML-редактор, написан тоже на Java, функционально-богат но подтормаживает больше.

Я остановился на UMLet , установим его под Arch Linux и Ubuntu :

# под Arch Linux yaourt -S umlet # под Ubuntu sudo apt-get install umlet

В UML все сущности можно разбить на такие типы:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные;

В UML используются четыре основных типа отношений:

Зависимость (dependency) - указывает на то, что изменение независимой сущности каким-то образом влияет на зависимую сущность. Графически отношение зависимости изображается в виде пунктирной линии со стрелкой, направленной от зависимой сущности к независимой.

Ассоциация (association) - имеет место, если одна сущность непосредственно связана с другой (или с другими - ассоциация может быть не только бинарной). Графически ассоциация изображается в виде сплошной линии с различными дополнениями, соединяющей связанные сущности.

Обобщение (generalization) - это отношение между двумя сущностями, одна из которых является частным (специализированным) случаем другой. Графически обобщение изображается в виде линии с треугольной не закрашенной стрелкой на конце, направленной от частного (подкласса) к общему (суперклассу).

Реализации - отношение реализации указывает, что одна сущность является реализацией другой. Графически реализация изображается в виде пунктирной линии с треугольной не закрашенной стрелкой на конце, направленной от реализующей сущности к реализуемой.

В UML 2 определено 13 типов диаграмм. По стандартам каждая диаграмма должна иметь рамку с прямоугольником (правый нижний угол скошенный) в левом верхнем углу, в котором указывается идентификатор диаграммы (тег) и название.

Диаграммы для изображения структуры системы :

  • Диаграмма компонентов (component diagram, тег component );
  • Диаграмма размещения (deployment diagram, тег deployment );
  • Диаграмма классов (class diagram, тег class );
  • Диаграмма объектов (object diagram, тег object );
  • Диаграмма структуры внутренней (composite structure diagram, тег class );

Диаграммы для изображения поведения системы :

  • Диаграмма синхронизации (interaction diagram, тег timing );
  • Диаграмма деятельности (activity diagram, тег activity );
  • Диаграмма последовательности (sequence diagram, тег sd );
  • Диаграмма коммуникации (communication diagram, тег comm );
  • Диаграмма автомата (state machine diagram, тег state machine );
  • Обзорная диаграмма взаимодействия (interaction overview diagram, тег interaction );

Особняком стоят диаграммы:

  • Диаграмма использования(use case diagram, тег use case);
  • Диаграмма пакетов (package diagram, тег package );

Диаграмма использования

Диаграмма использования (use case diagram) - это наиболее общее представление функционального назначения системы.

Рассматривая диаграмму вариантов использования в качестве модели системы, можно ассоциировать ее с моделью черного ящика. Каждый вариант использования определяет последовательность действий, которые должны быть выполнены проектируемой системой при взаимодействии ее с соответствующим актером.

На диаграмме использования применяются два типа основных сущностей: варианты использования и действующие лица, между которыми устанавливаются следующие основные типы отношений.

Отношение ассоциации - это отношение устанавливает, какую конкретную роль играет актер при взаимодействии с экземпляром варианта использования. Отношение ассоциации обозначается сплошной линией между актером и вариантом использования. Эта линия может иметь дополнительные условные обозначения, такие, например, как имя и кратность.

Отношение расширения - определяет взаимосвязь экземпляров отдельного варианта использования с более общим вариантом, свойства которого определяются на основе способа совместного объединения данных экземпляров. Так, если имеет место отношение расширения от варианта использования А к варианту использования В, то это означает, что свойства экземпляра варианта использования В могут быть дополнены благодаря наличию свойств у расширенного варианта использования А.

Отношение расширения между вариантами использования обозначается пунктирной линией со стрелкой (вариант отношения зависимости), направленной от того варианта использования, который является расширением для исходного варианта использования.

Отношение обобщения служит для указания того факта, что некоторый вариант использования А может быть обобщен до варианта использования В. В этом случае вариант А будет являться специализацией варианта В. При этом В называется предком или родителем по отношению А, а вариант А - потомком по отношению к варианту использования В.

Графически данное отношение обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования.

Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми атрибутами и особенностями поведения родительских вариантов.

Отношение включения между двумя вариантами использования указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования.

Отношение включения, направленное от варианта использования А к варианту использования В, указывает, что каждый экземпляр варианта А включает в себя функциональные свойства, заданные для варианта В.

Графически данное отношение обозначается пунктирной линией со стрелкой (вариант отношения зависимости), направленной от базового варианта использования к включаемому.

Диаграмма классов

Диаграмма классов (class diagram) - основной способ описания статической структуры системы.

На диаграмме классов применяется один основной тип сущностей: классы (включая многочисленные частные случаи классов: интерфейсы, примитивные типы, классы-ассоциации и т.д.), между которыми устанавливаются следующие основные типы отношений: зависимости, ассоциации, обобщения, реализации.

Отношение зависимости в общем случае указывает некоторое семантическое отношение между двумя элементами модели или двумя множествами таких элементов, которое не является отношением ассоциации, обобщения или реализации. Отношение зависимости используется в такой ситуации, когда некоторое изменение одного элемента модели может потребовать изменения другого зависимого от него элемента модели.

Отношение зависимости графически изображается пунктирной линией между соответствующими элементами со стрелкой на одном из ее концов, при этом стрелка направлена от класса-клиента зависимости к независимому классу или классу-источнику.

Над стрелкой могут находится специальные ключевые слова (стереотипы):

  • "access" - служит для обозначения доступности открытых атрибутов и операций класса-источника для классов-клиентов;
  • "bind" - класс-клиент может использовать некоторый шаблон для своей последующей параметризации;
  • "derive" - атрибуты класса-клиента могут быть вычислены по атрибутам класса-источника;
  • "import" - открытые атрибуты и операции класса-источника становятся частью класса-клиента, как если бы они были объявлены непосредственно в нем;
  • "refine" - указывает, что класс-клиент служит уточнением класса-источника в силу причин исторического характера, когда появляется дополнительная информация в ходе работы над проектом.

Отношение ассоциации соответствует наличию некоторого отношения между классами. Данное отношение обозначается сплошной линией с дополнительными специальными символами, которые характеризуют отдельные свойства конкретной ассоциации. В качестве дополнительных специальных символов могут использоваться имя ассоциации, а также имена и кратность классов-ролей ассоциации. Имя ассоциации является необязательным элементом ее обозначения.

Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой некоторую сущность, включающую в себя в качестве составных частей другие сущности. Применяется для представления системных взаимосвязей типа "часть-целое".

Отношение композиции является частным случаем отношения агрегации. Это отношение служит для выделения специальной формы отношения "часть-целое", при которой составляющие части в некотором смысле находятся внутри целого. Специфика взаимосвязи между ними заключается в том, что части не могут выступать в отрыве от целого, т. е. с уничтожением целого уничтожаются и все его составные части.

Отношение обобщения является отношением между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком). Применительно к диаграмме классов данное отношение описывает иерархическое строение классов и наследование их свойств и поведения. При этом предполагается, что класс-потомок обладает всеми свойствами и поведением класса-предка, а также имеет свои собственные свойства и поведение, которые отсутствуют у класса-предка.

Диаграмма автомата

Диаграмма автомата (state machine diagram) или диаграмма состояний в UML 1 (state chart diagram) - это один из способов детального описания поведения в UML. В сущности, диаграммы автомата, как это следует из названия, представляют собой граф состояний и переходов конечного автомата нагруженный множеством дополнительных деталей и подробностей.

Диаграмма состояний описывает процесс изменения состояний только одного класса, а точнее - одного экземпляра определенного класса, т. е. моделирует все возможные изменения в состоянии конкретного объекта. При этом изменение состояния объекта может быть вызвано внешними воздействиями со стороны других объектов или извне. Именно для описания реакции объекта на подобные внешние воздействия и используются диаграммы состояний.

На диаграмме автомата применяют один основной тип сущностей - состояния, и один тип отношений - переходы, но и для тех и для других определено множество разновидностей, специальных случаев и дополнительных обозначений. Автомат представляет динамические аспекты моделируемой системы в виде ориентированного графа, вершины которого соответствуют состояниям, а дуги - переходам.

Начальное состояние представляет собой частный случай состояния, которое не содержит никаких внутренних действий (псевдосостояния). В этом состоянии находится объект по умолчанию в начальный момент времени. Оно служит для указания на диаграмме состояний графической области, от которой начинается процесс изменения состояний.

Конечное (финальное) состояние представляет собой частный случай состояния, которое также не содержит никаких внутренних действий (псевдосостояния). В этом состоянии будет находиться объект по умолчанию после завершения работы автомата в конечный момент времени.

Диаграмма деятельности

При моделировании поведения проектируемой или анализируемой системы возникает необходимость не только представить процесс изменения ее состояний, но и детализировать особенности алгоритмической и логической реализации выполняемых системой операций.

Диаграмма деятельности (activity diagram) - еще один способ описания поведения, который визуально напоминает старую добрую блок-схему алгоритма. Используется для моделирования процесса выполнения операций.

Основным направлением использования диаграмм деятельности является визуализация особенностей реализации операций классов, когда необходимо представить алгоритмы их выполнения.

На диаграмме деятельности применяют один основной тип сущностей - действие, и один тип отношений - переходы (передачи управления). Также используются такие конструкции как развилки, слияния, соединения, ветвления. Рекомендуется в качестве имени простого действия использовать глагол с пояснительными словами.

Диаграмма последовательности

Диаграмма последовательности (sequence diagram) - это способ описания поведения системы "на примерах".

Фактически, диаграмма последовательности - это запись протокола конкретного сеанса работы системы (или фрагмента такого протокола). В объектно-ориентированном программировании самым существенным во время выполнения является пересылка сообщений между взаимодействующими объектами. Именно последовательность посылок сообщений отображается на данной диаграмме, отсюда и название.

На диаграмме последовательности применяют один основной тип сущностей - экземпляры взаимодействующих классификаторов (в основном классов, компонентов и действующих лиц), и один тип отношений - связи, по которым происходит обмен сообщениями.

Возможные виды сообщений (изображение взято у larin.in):

Диаграмма коммуникации

Диаграмма коммуникации (communication diagram) - способ описания поведения, семантически эквивалентный диаграмме последовательности. Фактически, это такое же описание последовательности обмена сообщениями взаимодействующих экземпляров классификаторов, только выраженное другими графическими средствами.

Таким образом, на диаграмме коммуникации также как и на диаграмме последовательности применяют один основной тип сущностей - экземпляры взаимодействующих классификаторов и один тип отношений - связи. Однако здесь акцент делается не на времени, а на структуре связей между конкретными экземплярами.

Диаграмма компонентов

Диаграмма компонентов (component diagram) - показывает взаимосвязи между модулями (логическими или физическими), из которых состоит моделируемая система.

Основной тип сущностей на диаграмме компонентов - это сами компоненты, а также интерфейсы, посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

  • реализации между компонентами и интерфейсами (компонент реализует интерфейс);
  • зависимости между компонентами и интерфейсами (компонент использует интерфейс);

Диаграмма размещения

Диаграмма размещения (deployment diagram) наряду с отображением состава и связей элементов системы показывает, как они физически размещены на вычислительных ресурсах во время выполнения.

На диаграмме размещения, по сравнению с диаграммой компонентов, добавляется два типа сущностей: артефакт, который является реализацией компонента и узел (может быть как классификатор, описывающий тип узла, так и конкретный экземпляр), а также отношение ассоциации между узлами, показывающее, что узлы физически связаны во время выполнения.

Диаграмма объектов

Диаграмма объектов (object diagram) - является экземпляром диаграммы классов.

На диаграмме объектов применяют один основной тип сущностей: объекты (экземпляры классов), между которыми указываются конкретные связи (чаще всего экземпляры ассоциаций). Диаграммы объектов имеют вспомогательный характер - по сути это примеры (можно сказать, дампы памяти), показывающие, какие имеются объекты и связи между ними в некоторый конкретный момент функционирования системы.

Диаграмма внутренней структуры (composite structure diagram) используется для более подробного представления структурных классификаторов, прежде всего классов и компонентов.

Структурный классификатор изображается в виде прямоугольника, в верхней части которого находится имя классификатора. Внутри находятся части (parts). Частей может быть несколько. Части могут взаимодействовать друг с другом. Это обозначается с помощью соединителей (connectors) различных видов. Место на внешней границе части, к которому присоединяется соединитель, называется портом (port). Порты располагаются также на внешней границе структурного классификатора.

Обзорная диаграмма взаимодействия (interaction overview diagram) является разновидностью диаграммы деятельности с расширенным синтаксисом: в качестве элементов обзорной диаграммы взаимодействия могут выступать ссылки на взаимодействия (interaction use), определяемые диаграммами последовательности.

Диаграмма синхронизации

Диаграмма синхронизации (timing diagram) представляет собой особую форму диаграммы последовательности, на которой особое внимание уделяется изменению состояний различных экземпляров классификаторов и их временной синхронизации.

Диаграмма пакетов

Диаграмма пакетов (package diagram) - единственное средство, позволяющее управлять сложностью самой модели.

Основные элементы нотации - пакеты и зависимости с различными стереотипами.

Модель сущность-связь (ER-модель)

Аналогом диаграммы классов (UML) может быть ER-модель , которая используется при проектировании баз-данных (реляционной модели).

Модель сущность-связь (ER-модель) - модель данных, позволяющая описывать концептуальные схемы предметной области. ER-модель используется при высокоуровневом (концептуальном) проектировании баз данных. С её помощью можно выделить ключевые сущности и обозначить связи, которые могут устанавливаться между этими сущностями. wikipedia

Любой фрагмент предметной области может быть представлен как множество сущностей, между которыми существует некоторое множество связей.

Основные понятия:

Сущность (entity) - это объект, который может быть идентифицирован неким способом, отличающим его от других объектов, например, КЛИЕНТ 777 . Сущность фактически представляет из себя множество атрибутов.

Набор сущностей (entity set) - множество сущностей одного типа (обладающих одинаковыми свойствами).

Связь (relationship) - это ассоциация, установленная между несколькими сущностями.

Домен (domain) - множество значений (область определения) атрибута.

Существует три типа бинарных связей:

  • один к одному - одиночный экземпляр сущности одного класса связан с одиночным экземпляром сущности другого класса, напимер, НАЧАЛЬНИК - ОТДЕЛ;
  • 1 к N или один ко многим - одиночный экземпляр сущности одного класса связан со многими экземплярами сущности другого класса, например, ОТДЕЛ - СОТРУДНИК;
  • N к M или многие ко многим - многие экземпляры сущности одного класса связаны со многими экземплярами сущности другого класса, например, СОТРУДНИК - ПРОЕКТ;
  • Словарь основных понятий по UML

    Объект (object) - сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.

    Класс (class) - описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение.

    Интерфейс (interface) - именованное множество операций, определяющее набор услуг, которые могут быть запрошены потребителем и предоставлены поставщиком услуг.

    Кооперация (collaboration) - совокупность объектов, которые взаимодействуют для достижения некоторой цели.

    Действующее лицо (actor) - сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней.

    Компонент (component) - модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов.

    Артефакт (artifact) - элемент информации, который используется или порождается в процессе разработки программного обеспечения. Другими словами, артефакт - это физическая единица реализации, получаемая из элемента модели (например, класса или компонента).

    Узел (node) - вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты.

    Поведенческие сущности предназначены для описания поведения. Основных поведенческих сущностей всего две: состояние и действие.

    Состояние (state) - период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события.

    Действие (action) - примитивное атомарное вычисление.

    Автомат является пакетом, в котором определено множество понятий, необходимых для представления поведения моделируемой сущности в виде дискретного пространства с конечным числом состояний и переходов.

    Классификатор (classifier) - это дескриптор множества однотипных объектов.

    Дополнительное чтиво

    • Фаулер М. UML. Основы, 3-е издание
    • Буч Г., Рамбо Д., Якобсон И. Язык UML. Руководство пользователя

Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диагра́мма компоне́нтов, Component diagram - статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами.

Таким образом иллюстрируются отношения клиент-источник между двумя компонентами. После ознакомления с разделами («Пример», «Применение») вы можете попробовать свои силы в самостоятельном составлении диаграмм компонентов. В объектно-ориентированном сообществе идут дебаты о том, в чем состоит различие между компонентом и обычным классом. В UML 1 был отдельный символ для компонента (рис. 14.1). В UML 2 этого значка нет, но можно обозначить прямоугольник класса похожим значком.

Кроме этого значка компоненты не принесли с собой никаких новых обозначений. Компоненты связываются между собой с помощью предоставляемых или требуемых интерфейсов, при этом шарово-гнездовая нотация обычно применяется только на диаграммах классов.

В этом примере компонент Till (Касса) может взаимодействовать с компонентом Sales Server (Сервер продаж) с помощью интерфейса sales message (Сообщение о продажах). Вопрос о сущности компонента является предметом бесконечных споров. Компоненты – это не технология. Компоненты – это скорее стиль отношения клиентов к программному обеспечению. Они хотят, чтобы новые компоненты работали так же, как и прежние, и обновлять их согласно своим планам, а не по указанию производителей.

Важно то, что компоненты представляют элементы, которые можно независимо друг от друга купить и обновить. В результате разделение системы на компоненты является в большей мере маркетинговым решением, чем техническим.

В ходе проектирования архитектором или опытным программистом создается проектная документация, включающая текстовые описания, диаграммы, модели будущей программы. UML - является графическим языком для визуализации, описания параметров, конструирования и документирования различных систем (программ в частности).

Диаграмма классов служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. С этой точки зрения диаграмма классов является дальнейшим развитием концептуальной модели проектируемой системы. Для моделирования взаимодействия объектов в языке UML используются соответствующие диаграммы взаимодействия.

На диаграмме кооперации в виде прямоугольников изображаются участвующие во взаимодействии объекты, содержащие имя объекта, его класс и, возможно, значения атрибутов. В отличие от диаграммы последовательности, на диаграмме кооперации изображаются только отношения между объектами, играющими определенные роли во взаимодействии. При этом представляются только компоненты-экземпляры программы, являющиеся исполнимыми файлами или динамическими библиотеками.

Эта диаграмма, по сути, завершает процесс ООАП для конкретной программной системы и ее разработка, как правило, является последним этапом спецификации модели. И способствуют этому несколько специальных техник (Scrum of scrums, компонентные команды, участие архитектора в роли Product owner’а). Это и есть развитие реальной системы.

И в этом нет ничего необычного и неверного. Компоненты программных систем, их разновидности. Все рассмотренные ранее диаграммы отражали концептуальные и логические аспекты построения модели системы. С тем чтобы пояснить отличие логического и физического представлений, необходимо в общих чертах рассмотреть процесс разработки программной системы.

3.4.3. Применение диаграмм компонентов и размещения

При этом уже в тексте программы предполагается организация программного кода, определяемая синтаксисом языка программирования и предполагающая разбиение исходного кода на отдельные модули. А это возможно, только если программный код системы будет реализован в форме исполняемых модулей, библиотек классов и процедур, стандартных графических интерфейсов, файлов баз данных.

Диаграмма компонентов и особенности ее построения

Для представления физических сущностей в языке UML применяется специальный термин – компонент. Компонент (component) - физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.

Дополнительно компонент может иметь текстовый стереотип и помеченные значения, а некоторые компоненты – собственное графическое представление. Компонентом может быть исполняемый код отдельного модуля, командные файлы или файлы, содержащие интерпретируемые скрипты.

В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. UML компоненты и стереотипы. Диаграмма развертывания предназначена для визуализации элементов и компонентов программы, существующих лишь на этапе ее исполнения (runtime). Можно также разбивать компоненты на части с помощью диаграмм составных структур. Данный раздел посвящен сразу двум диаграммам: компонентов и размещения, для которых можно использовать обобщающее название ‒ диаграммы реализации.

Данный раздел посвящен сразу двум диаграммам: компонентов и размещения, для которых можно использовать обобщающее название ‒ диаграммы реализации . Связано это с тем, что данные диаграммы приобретают особую важность на позднейших фазах разработки ‒ на фазах реализации и поставки. В то время как на ранних фазах разработки ‒ анализа и проектирования ‒ эти диаграммы либо вообще не используются, либо имеют самый общий, не детализированный вид.

С точки зрения реализации проектируемая система состоит из компонентов (представленных на диаграммах компонентов), распределенных по вычислительным узлам (представленным на диаграммах размещения).

В UML 2 по сравнению с UML 1 произошло значительное изменение, а именно, понятие "компонент" было разделено на две составляющие: логическую и физическую. Логическая составляющая, продолжающая носить имя компонент (component), является элементом логической модели системы, в то время как физическая составляющая, называемая артефактом (artifact), олицетворяет физический элемент проектируемой системы, размещающийся на вычислительном узле (node).

Диаграммы компонентов и размещения имеют много общего, объединяя воедино следующие, теснейшим образом связанные, вещи:

  • структуру логических элементов (компонентов);
  • отображения логических элементов (компонентов) на физические элементы (артефакты);
  • структуру используемых ресурсов (узлов) с распределенными по ним физическими элементами (артефактами).

В данном разделе мы отступим от правила, принятого нами при описании остальных диаграмм. А именно, мы не будем раздельно для каждой диаграммы рассматривать сущности, применяемые на ней. Более правильным нам кажется совместное рассмотрение всех сущностей и отношений в одном разделе, чем мы и займемся.

3.4.1. Интерфейс

∇ Встречающиеся в литературе варианты перевода: "реализованный", "предоставляемый".

∇∇ Встречающийся в литературе вариант перевода ‒ "запрашиваемый"

Однако, нельзя забывать, что сам по себе интерфейс ‒ это просто описание контракта, а обеспеченным или требуемым он становиться в зависимости от того, как этот интерфейс используется:

  • если классификатор реализует интерфейс ‒ то для данного классификатора это обеспеченный интерфейс и данный факт показывается с помощью отношения реализации 3 ;
  • если классификатор вызывает операции интерфейса - то для данного классификатора это требуемый интерфейс и данный факт показывается с помощью отношения зависимости 4 .

Разобравшись с интерфейсами, давайте перейдем к компонентам.

3.4.2. Компоненты, артефакты и узлы

Компонент (component) ‒ это модульный фрагмент логического представления системы, взаимодействие с которым описывается набором обеспеченных и требуемых интерфейсов.

С понятием "компонент" часто ассоциируют компонентное или сборочное программирование, однако для UML это соответствие не правомерно. Компонент UML является частью модели, и описывает логическую сущность, которая существует только во время проектирования (design time), хотя в дальнейшем ее можно связать с физической реализацией (артефактом) времени исполнения (run time).

Стандартом UML для компонентов предусмотрены стереотипы, приведенные в следующей таблице.

Табл. Стандартные стереотипы компонентов

Аналогом компонента в смысле сборочного программирования является понятие артефакта в UML. Причем не любого артефакта, а только некоторых из его стереотипов.

Артефакт ‒ это любой созданный искусственно элемент программной системы.

К элементам программной системы, а, следовательно, и к артефактам, могут относиться исполняемые файлы, исходные тексты программ, веб-страницы, справочные файлы, сопроводительные документы, файлы с данными, модели и многое другое, являющееся физическими элементами информации. Другими словами, артефактами являются те информационные элементы, которые тем или иным способом используются при работе программной системы и входят в ее состав.

Для того чтобы как-то отражать такое разнообразие типов артефактов в UML предусмотрены стандартные стереотипы, перечисленные в таблице

Табл. Стандартные стереотипы артефактов

Однако реальные артефакты гораздо разнообразнее по своим типам, чем перечисленные выше. Чтобы как-то учесть это обстоятельство, многие инструменты, помимо стандартных стереотипов, поддерживают дополнительные стереотипы артефактов, часто со специальными значками и фигурами, обеспечивающими высокую наглядность диаграмм.

Самым важным аспектом использования понятия артефакта в UML является то, что артефакт может участвовать в отношении манифестации.

Манифестация ‒ это отношение зависимости со стереотипом «manifest» , связывающее элемент модели (например, класс или компонент) и его физическую реализацию в виде артефакта.

Ниже представлен класс Company , который связан отношением манифестации (зависимость со стереотипом «manifest») с двумя артефактами со стереотипом «source» , которые в свою очередь определяют артефакт времени выполнения динамическую библиотеку (со стереотипом «library») Company .

Вообще говоря, отношение манифестации ‒ это отношение типа "многие ко многим", один элемент модели может быть реализован многими артефактами, и один артефакт может участвовать в реализации многих элементов модели.

Манифестацию графически изображают отношением зависимости со стереотипом «manifest» от артефакта к реализуемой сущности. Поскольку манифестация ‒ это отношение типа "многие ко многим", для полного описания отношения манифестации могут потребоваться несколько отношений зависимости в модели.

Третья сущность, рассматриваемая в этом параграфе ‒ узел.

∇ При использовании UML в других предметных областях, узлом может быть не только компьютер, но и другой объект: человек, механическое устройство и т.д.

В UML предусмотрено два стереотипа для узлов «executionEnvironment» и «device» .

Узел со стереотипом «executionEnvironment» позволяет моделировать аппаратно-программную платформу, на которой происходит выполнение приложения. Примерами среды выполнения являются: операционная система, система управления базами данных и т.д.

Узел со стереотипом «device» также моделирует аппаратно-программную платформу, но допускает возможность вложение одного узла в другой, как это показано на следующем рисунке.

Артефакты системы во время ее работы размещаются на узлах, что графически выражается либо их перечислением внутри узла 1 (см. рисунок выше), либо отношением зависимости со стереотипом «deploy» между артефактом и узлом 1 (см. рисунок ниже), либо изображением артефакта внутри изображения узла 2 (см. рисунок ниже). Все варианты нотации равноправны.

Если при размещении артефакта на узле важную роль играют специфичные для программной среды параметры, то они могут быть заданы посредством спецификации развертывания (deployment specification).

Спецификация развертывания изображается, как и классификатор (в виде прямоугольника), но со стереотипом «deploymentSpec» и связывается отношением зависимости с артефактом.

Последнее, что нам осталось рассмотреть в рамках данного параграфа ‒ это отношение ассоциации между узлами.

Если узлы связаны между собой отношением ассоциации, то это означает то же, что и в других контекстах: возможность обмена сообщениями. Применительно к вычислительным сетям, состоящим из узлов, ассоциация означает наличие канала связи. Если нужно указать дополнительную информацию о свойствах канала, то это можно сделать, используя общие механизмы: стереотипы (например, «tcp/ip» см. на рисунке ниже), ограничения и именованные значения.

На этом мы закончим данный обзорный параграф, чтобы в следующем подробнее познакомится с диаграммами компонентов и размещения на примере информационной системы отдела кадров.

3.4.3. Применение диаграмм компонентов и размещения

Давайте попытаемся ответить на вопрос, какие интерфейсы, компоненты и артефакты можно выделить в информационной системе отдела кадров, а также как целесообразно разместить разработанное программное обеспечение на вычислительных узлах.

Основное назначение проектируемой информационной системы ‒ хранить данные о кадрах и выполнять по указанию пользователя некоторые операции с этими данными. Анализируя состав операций, мы видим, что они сводятся к созданию, модификации и удалению хранимых элементов данных. Стандартным решением в таких ситуациях является применение готовой СУБД (DBMS ‒ Data Base Management System). С точки зрения проектирования информационной системы отдела кадров целесообразно считать используемую СУБД готовым компонентом с заранее определенными интерфейсами и протоколом взаимодействия. Мы можем не заострять внимания на структуре этого компонента ‒ она стандартна и, наверное, достаточно хорошо описана вне нашей модели.

СУБД возьмет на себя все функции по непосредственному манипулированию данными: создание, удаление и поиск записей в таблицах и т.д. Реализация операций нашей информационной системы отдела кадров сводится к некоторой последовательности элементарных операций с данными. Например, операция перевода сотрудника с одной должности на другую, видимо, потребует изменения в трех элементах данных: в данных о сотруднике и в данных о старой и новой должностях. Однако целесообразно ли считать, что определение и выполнение самой последовательности элементарных операций с данными также является прерогативой выделенного нами компонента ‒ СУБД? Общепринятая практика отвечает на этот вопрос отрицательно. По многим причинам лучше выделить это в отдельный компонент, обычно называемый бизнес-логикой . Кроме этого, мы должны предположить, что в нашей системе должен быть компонент, ответственный за пользовательский интерфейс. В первом приближении мы приходим к структуре компонентов, приведенной ниже, которая называется «трехуровневая архитектура».

∇ Крайне неудачный, но часто используемый термин, являющийся калькой английского business logic. Бизнес-логика не имеет никакого отношения ни к бизнесу (в российском понимании этого слова), ни к логике. Правильнее было бы использовать сложное словосочетание "правила обработки данных", но мы боимся оказаться непонятыми.

В версии UML 2 произошли следующие изменения в нотации диаграмм компонентов.

Во-первых, компоненты, как и любой классификатор, можно изображать единообразно, в виде прямоугольников, в которых, указывается либо стереотип «component» 1 , либо один из уточняющих стереотипов, приведенных в табл. Стандартные стереотипы компонент в параграфе 3.4.2 2 , либо соответствующий значок в правом верхнем углу прямоугольника 3 .

Во-вторых, требуемые и обеспеченные интерфейсы можно изображать с помощью нотации "чупа-чупс" 4 (см. параграф 3.3.1), так что отношение взаимодействия компонентов через некоторый интерфейс выглядит естественным и симметричным.

Сказанное иллюстрирует рисунок ниже на котором указаны те же сущности и отношения, что и на рисунке выше.

Приведенный пример диаграммы компонентов достаточно тривиален и выглядят не слишком убедительно с точки зрения полезности при архитектурном проектировании. Осознавая этот недостаток, мы приведем еще один пример, связанный с информационной системой отдела кадров, в котором постараемся показать, что диаграммы компонентов являются достаточно выразительным средством проектирования архитектуры.

Допустим, что в проектируемой информационной системе отдела кадров требуется разграничить права на выполнение операций и доступ к данным для различных категорий пользователей. Хотя в нашем техническом задании про это не сказано ни слова, но для современных систем данное требование стало общим местом (иногда явно лишним), так что пример не является надуманным. Нам известно множество способов реализации разграничения прав доступа к данным, а неизвестных нам способов, наверное, существует еще больше. Мы не будем вдаваться в их описание и обсуждение, а ограничимся одним - очень простым, но действенным. У нашего приложения два действующих лица (см. параграф 2.2.1), т.е. две категории пользователей. Допустим, что достаточно разграничить права на уровне категорий пользователей. Тогда можно поступить следующим образом: сделать просто два различных приложения (или, как обычно говорят в таких случаях, два автоматизированных рабочих места ‒ АРМа). Пользователи, имеющие доступ к АРМу в целом, могут выполнять все операции АРМа и, таким образом, имеют те и только те права на доступ к данным, которые обеспечиваются операциями, реализованными в АРМе.

Для приложения типа информационной системы отдела кадров такого решения практически достаточно. Таким образом, разграничение прав доступа к данным переносится на уровень доступа к компьютерам и установленным на них приложениям, а это уже проблемы операционных систем и служб безопасности предприятия, о которых в информационной системе отдела кадров можно не заботиться.

Принятое решение легко выражается на диаграмме компонентов.

Все что осталось сделать ‒ это определить состав компонентов, т.е. показать какие классы в какие компоненты входят.

Самый простой способ показать связь между компонентом и входящими в него классами ‒ использовать отношение реализации 1 , как это представлено ниже.

Другой способ определения состава компонента ‒ рассматривать его как структурированный классификатор и использовать диаграмму внутренней структуры (см. параграф 1.6.2 и параграф 3.5.1).

Следующим структурным аспектом, который необходимо обсудить, является описание размещения артефактов относительно участвующих в работе вычислительных ресурсов.

Если речь идет о настольном приложении, которое целиком хранится и выполняется на одном компьютере, то отдельная диаграмма размещения не нужна ‒ достаточно диаграммы компонентов (а может быть, и без нее можно обойтись). При моделировании распределенных приложений значение диаграмм размещения резко возрастает: они являются описанием топологии развернутой системы.

∇ Программисты заимствовали название раздела математики (топология) как термин. Например, часто можно встретить выражение "топология локальной сети". Нельзя сказать, что такое заимствование совершенно неверно, но в то же время оно и не совсем по существу. Речь идет просто об описании структуры связей конечного множества узлов, т.е. о графе.

Продолжим рассмотрение информационной системы отдела кадров в этом аспекте. Допустим, что мы приняли архитектуру, приведенную выше на рисунке "Диаграмма компонентов ИС OK". Сколько компьютеров будет использоваться при работе данного приложения? На этот вопрос нужно отвечать также вопросом: а сколько пользователей будет у системы и сколько из них будут работать с приложением одновременно? Если имеется только один пользователь (или, хуже того, нашу систему установят "для галочки", а использовать не будут), то проблем нет ‒ настольное приложение ‒ один компьютер и диаграмма размещения не нужна. Допустим, что у нашей системы должно быть много пользователей, и они могут работать одновременно. Тогда ответ очевиден: узлов должно быть не меньше, чем число одновременно работающих пользователей, потому что вдвоем за одним персональным компьютером обычным пользователям работать неудобно. Скорее всего, узлов должно быть на единицу больше чем пользователей, т.к. в большинстве организаций есть специально выделенный компьютер (сервер) для хранения корпоративных данных. Там мы и поместим нашу базу данных, в расчете на то, что нужная СУБД, скорее всего, на сервере уже установлена. Остается вопрос о размещении артефактов, реализующих бизнес-логику. Здесь возможны разные варианты: на компьютере пользователя, на промежуточной машине (сервере приложений), на корпоративном сервере баз данных. Если мы остановимся на последнем варианте (который на жаргоне называется "архитектура клиент/сервер с тонким клиентом"), то получим диаграммы, приведенные на следующих двух рисунках.

Обе эти диаграммы являются диаграммами размещения, но каждая из них имеет свои особенности. На первой диаграмме упор сделан на указание соответствия между компонентами и артефактами, выражающийся в наличии большого количества отношений зависимости со стереотипом «manifest» (см., например, 1 на первой диаграмме). Вторая диаграмма показывает отношения между артефактами, или, другими словами, определяет, какой артефакт от какого зависит, например, запрашивает данные (в качестве примера см. 1 на второй диаграмме). На обеих диаграммах показаны вычислительные узлы и отношения между ними (2 на обоих диаграммах). Заметим, что на диаграмме появился дополнительный артефакт ‒ Help (например, 3 на второй диаграмме). Это документ, содержащий справочную информацию.

В завершении параграфа дадим несколько советов по поводу того, в каких случаях следует применять диаграммы компонентов и размещения.

Начнем с уже высказанного элементарного соображения: в случае разработки "монолитного" настольного приложения диаграммы размещения не нужны ‒ они оказываются тривиальными и никакой полезной информации не содержат. Таким образом, диаграммы размещения применяются только при моделировании многокомпонентных приложений.

Если приложение поставляется в виде "конструктора" (набора "кубиков") из которого при установке собирается конкретный уникальный экземпляр приложения, то диаграммы размещения оказываются просто незаменимым средством. Действительно, многие современные приложения, особенно развитые системы автоматизации управления делопроизводством предприятия, поставляются в виде большого (десятки и сотни) набора артефактов, из которых "на месте" собирается нужная пользователю, часто уникальная, конфигурация. Некоторые авторитетные источники рекомендуют использовать диаграммы размещения для управления конфигурацией не только на фазе поставки и установки программного обеспечения, но и в процессе разработки: для отслеживания версий компонентов, вариантов сборки и т.п.

При разработке приложений, которые должны взаимодействовать с так называемыми унаследованными (legacy) приложениями и данными, без диаграмм компонентов трудно обойтись. Дело в том, что фактически единственным средством UML, позволяющим как-то описать и включить в модель унаследованные приложения и данные являются компоненты (и их интерфейсы). Сюда же относится случай моделирования доступа к данным из "неродной" СУБД.

Последним (в нашем списке) примером применения диаграмм размещения является моделирование систем динамической архитектуры, то есть таких систем, которые меняют состав и количество экземпляров своих артефактов во время выполнения . Например, многие web-приложения меняют свою конфигурацию во время выполнения в зависимости от текущей нагрузки. Информационная система отдела кадров не является системой динамической архитектуры, поэтому мы не приводим примера.

∇ Отметим еще раз, что во время выполнения мы имеем дело не с самими классификаторами, а с их экземплярами. Представлению экземпляров классификаторов посвящен параграф 3.5.4 .

Похожие публикации