Компьютеры с современный мир

Технология программирования информационной системы гостиничного комплекса. Методология UML

Язык Unified Modelling Language (UML) можно считать результатом довольно длинной и еще не завершившейся эволюции методологий моделирования и дизайна.

В 90-х годах наиболее популярными были три объектно-ориентированных подхода:

В результате соперничества этих методов авторы вышеперечисленных методологий создали унифицированный язык моделирования UML (рис. 1), который унаследовал присутствовавшие в других языках элементы. Далее приведена оригинальная терминология заимствованных/унаследованных элементов языка этой методологии - дело в том, что сейчас существует несколько вариантов переводов этих терминов на русский язык.

Рис. 1. UML и его предшественники

Данная унификация преследовала три основные цели:

Моделирование системы, начиная с концепции и заканчивая исполняемым модулем, с применением объектно-ориентированных методик;

Разрешение проблем масштабирования в сложных системах;

Создание языка моделирования, используемого и человеком, и компьютером.

Официальной датой начала работ по UML считают октябрь 1994 года, когда Рамбо перешел в компанию Rational (ныне Rational - одно из подразделений корпорации IBM). Последним стандартом этого языка является версия UML1.3, вышедшая в 1999 году.

Средства UML-моделирования

Является ли UML необходимым компонентом RUP? Да, безусловно. Но практика использования UML как средства описания процесса моделирования и разработки программного обеспечения не ограничивается RUP. Как и любой другой язык, UML - это всего только средство. В RUP предусмотрен ряд утилит, позволяющих довольно легко использовать UML, но их набор не ограничивается лишь продуктами IBM/Rational. Ниже приводится далеко не полный список некоторых продуктов, поддерживающих UML:

Rational Rose (Rational Software, Windows 98/NT/2000/XP, Linux Red Hat 6.2, 7.0, Solaris 2.5.1, 2.6, 7, 8, HP-UX 10.20, 11.0, 11.i);

Microsoft Visual Studio .NET Enterprise Architect, Microsoft Visio (Microsoft, платформы: Windows 98/NT/2000/XP/Server 2003);

Describe Enterprise (Embarcadero technologies, платформы: Windows 98/NT/2000/XP);

Семейство продуктов Together (Borland, платформы: Windows 98/NT/2000/XP, Linux, Solaris);

Bold for Delphi (Borland, платформы: Windows 98/NT/2000/XP);

MagicDraw (Magic, Inc., платформы: Windows 98/Me/NT/2000/XP, Solaris, OS/2, Linux, HP-UX, AIX, Mac OS);

QuickUML (ExcelSoftware, платформы: Windows 98/NT/2000/XP) - неплохая утилита для начинающих.

Отметим также некоторые продукты OpenSourse, например ArgoUML, Novosoft UML Library.

Документ, который содержит списки продуктов, поддерживающих UML, компаний-производителей, платформ, а также информацию о примерных ценах продуктов, можно найти по адресу: http://www.objectsbydesign.com/tools/umltools_byCompany.html .

Следует также отметить, что, несмотря на факт существования стандарта UML 1.3, поддерживаемые перечисленными продуктами реализации UML или обладают собственными особенностями, или не полностью следуют стандарту, поэтому при выборе средства моделирования следует обращать внимание на поддерживаемые типы диаграмм и особенности синтаксиса. Кроме того, возможности прямого и обратного проектирования (Round-Trip Engineering) в разных продуктах весьма различны. Не все вышеуказанные продукты могут поддерживать языки программирования Java, C++, CORBA IDL, поэтому следует обращать особое внимание на то, какую модель сможет сгенерировать тот или иной продукт из имеющегося у вас кода, на каком языке может быть получен код из вашей UML-модели и какого она должна быть типа.

Таблица, показывающая, какие диаграммы UML реализованы в том или ином продукте, находится по адресу: http://www.jeckle.de/umltools.htm .

Для чего применяется UML

UML — прежде всего язык, и, как всякое языковое средство, он предоставляет словарь и правила комбинирования слов в этом словаре. В данном случае словарь и правила фокусируются на концептуальном и физическом представлениях системы. Язык диктует, как создать и прочитать модель, однако не содержит никаких рекомендаций о том, какую модель системы необходимо создать, — это выходит за рамки UML и является прерогативой процесса разработки программного обеспечения. В связи с этим, видимо, UML довольно часто ассоциируют с RUP — одним из возможных процессов, рекомендующих, какие модели, как и когда нужно создавать для успешной разработки продукта.

UML — это язык визуализации. Написание моделей на UML преследует одну простую цель — облегчение процесса передачи информации о системе. За каждым символом UML стоит строго определенная семантика, что позволяет избегать ошибок интерпретации (ответы на вопросы типа «а что имел в виду разработчик Х, когда он описал иерархию классов Y…» и т.п. будут достаточно прозрачны).

UML — это язык спецификаций и точных определений. В этом смысле моделирование на UML означает построение моделей, которые точны, недвусмысленны и полны.

UML — это язык конструирования. UML не является визуальным языком программирования, но модели в терминах UML могут быть отображены на определенный набор объектно-ориентированных языков программирования. UML предоставляет возможности прямого (существующая модель ® новый код) и обратного (существующий код ® новая модель) проектирования. Достаточно часто средства UML-моделирования реализуют отображения UML-моделей в коде на языках Java, C++, CORBA, VB, Smalltalk.

UML — это язык документирования. Процесс разработки программного обеспечения предусматривает не только написание кода, но и создание таких артефактов, как список требований, описание архитектуры, дизайн, исходный код системы, планирование проекта, тесты, набор прототипов, релизы продукта. В зависимости от культуры разработки продукта в той или иной компании степень формализации данных документов существенно различается, варьируясь от строго определенных шаблонов и формата документов до разговоров на произвольную тему по e-mail или лично. Тем не менее все эти артефакты критичны для успешного процесса разработки продукта. UML предоставляет средства отображения требований к системе, построения документации, тестов, моделирования необходимых действий для планирования проекта и для управления поставленными конечному пользователю релизами.

Элементы языка

Основными элементами UML являются сущности (Thing), отношения (Relationship), диаграммы (Diagram). Сущности являются ключевыми абстракциями языка, отношения связывают сущности вместе, диаграммы группируют коллекции сущностей, которые представляют интерес.

Сущности

Структурные сущности являются существительными языка (рис. 2). К ним относятся:

классы (Class) — это набор объектов, разделяющих одни и те же атрибуты, операции, отношения и семантику. Класс реализует один или несколько интерфейсов и изображается виде прямоугольника, включающего имя класса, имена атрибутов, операций, примечание;

интерфейсы (Interface) — это набор операций, которые определяют сервис класса или компоненты. Интерфейс графически изображается в виде круга и, как правило, присоединяется к классу или к компоненту, который реализует данный интерфейс;

кооперации (Collaboration) — определяют взаимодействие и служат для объединения ролей и других элементов, которые взаимодействуют вместе так, что получающееся в результате поведение объекта оказывается большим, чем просто сумма всех элементов. Изображается в виде эллипса с пунктирной границей;

Прецеденты (Use case) — описание набора последовательностей действий, которые выполняются системой и имеют значение для конкретного действующего лица (Actor). Прецеденты изображаются в виде эллипса и используются для структурирования поведенческих сущностей в модели;

активные классы (Active class) — это классы, чьими экземплярами являются активные объекты, которые владеют процессом или потоком управления и могут инициировать управляющее воздействие. Стереотипами конкретного класса являются процесс (Process) и поток (Thread). Графически такой класс изображается как класс с жирной границей;

компоненты (Component) — это физически заменяемые части системы, обеспечивающие реализацию ряда интерфейсов. Компонент — это физическое представление таких логических элементов, как классы, интерфейсы и кооперации. Предметная область компонентов относится к реализации. Изображаются компоненты в виде прямоугольника с ярлыками слева и, как правило, имеют только имя и примечание;

узлы (Node) — физические объекты, которые существуют во время исполнения программы и представляют собой коммуникационный ресурс, обладающий, по крайней мере, памятью, а зачастую и процессором. На узлах могут находиться выполняемые объекты и компоненты. Изображаются узлы в виде куба, имеют имя и примечание.

Данные перечисленных семи типов объектов являются базовыми структурными объектами UML. Существуют также вариации данных объектов, такие как действующие лица (Actor), сигналы (Signal), утилиты (Utility - вид класса), процессы и нити (Process и Thread - виды активного класса), приложения (Application), документы (document), файлы (File), библиотеки (Library), страницы (Page), таблицы (Table).

Поведенческие сущности — это динамические части моделей UML (рис. 3). К ним относятся:

взаимодействия (Interaction) — включают набор сообщений, которыми обмениваются указанные объекты с целью достижения указанной цели. Взаимодействие описывается в контексте кооперации и изображается направленной линией, маркируется именем операции сверху;

автоматы (State machine) — спецификации поведения, представляющие собой последовательности состояний, через которые проходит в течение своей жизни объект, или взаимодействие в ответ на происходящие события (а также ответные действия объекта на эти события). Автомат прикреплен к исходному элементу (классу, кооперации или методу) и служит для определения поведения его экземпляров. Изображается автомат как прямоугольник с закругленными углами.

Группирующие сущности — это организационные составляющие моделей UML. К ним относятся пакеты (Package) — обобщенный механизм для организации элементов в группы. Структурные, поведенческие, группирующие сущности могут быть помещены в пакет. Пакеты являются чисто концептуальными сущностями — в отличие от компонентов, существующих во время исполнения программы. Изображается пакет как папка с ярлыком сверху и, как правило, имеет только имя.

Аннотационные сущности — это пояснительные составляющие моделей UML, к которым относятся примечания (Note) — пояснительные элементы языка (рис. 4). Они содержат текст комментария, изображаются в виде прямоугольника с загнутым уголком страницы.

Отношения

К базовым отношениям между объектами, которые позволяют строить блоки UML, можно отнести следующие (рис. 5):

зависимость (Dependency) — это семантическое отношение между двумя сущностями, при котором изменение одной из них (независимой сущности) может отразиться на семантике другой (зависимой). Виды зависимостей, которые соответствуют нескольким видам отношений между объектами, перечислены ниже:

- абстракция (Abstraction) — представляет собой изменение уровня абстрактности для некоторого понятия. Как правило, один из элементов, более абстрактный, а второй — более конкретный, хотя возможны ситуации, когда оба элемента являются двумя возможными вариантами понятия, существующими на одном уровне абстракции. К зависимости абстракции относятся следующие стереотипы (в порядке возрастания специфичности отношений): трассировать (Trace), уточнять (Refine), реализовать (есть собственная нотация) и выводить (Derive),

- связывание (Binding) — связывает элемент с шаблоном. Аргументы, необходимые для параметров шаблона, прикреплены к зависимости связывания в виде списка,

- комбинирование (Combination) — соотносит две части описания классификатора (любой элемент модели, описывающий определенные черты структуры и поведения системы), чтобы получить полное описание элемента,

- разрешение (Permission) — зависимость (всегда изображается в виде особого стереотипа), связывающая тот или иной пакет (или класс) с другим пакетом (или классом), которому он предоставляет разрешение использовать свое содержимое. Стереотипами зависимости разрешения являются: быть доступным (Access), быть дружественным (Friend) и импортировать (Import),

- использование (Usage) — описывает ситуацию, когда одному элементу для правильной реализации или функционирования требуется присутствие другого элемента. К стереотипам этого вида зависимости относятся: вызывать (Call), создать экземпляр (Instantiate), параметр (Parameter) и отправить (Send);

ассоциация (Association) — структурное отношение, описывающее множество связей между объектами классификаторов, где связь (Link) — это соединение между объектами, которое описывает связи между их экземплярами. Ассоциации являются как бы клеем, который связывает систему воедино. Без ассоциаций мы имели бы просто некоторое количество классов, не способных взаимодействовать друг с другом. У ассоциации может быть имя, однако основную информацию об ассоциации следует искать у ее полюсов, где описывается, каким образом каждый объект участвует в ассоциации: у ассоциации есть список, состоящий из двух или более полюсов ассоциации: каждый из них определяет роль, которую играет данный классификатор в этой ассоциации. Один и тот же классификатор может играть несколько ролей, которые не являются взаимозаменяемыми. Каждый полюс ассоциации описывает свойства, применимые к конкретному объекту этой ассоциации, например сколько раз один объект может появляться в связях (множественность). Некоторые свойства (такие как допустимость навигации) применимы только к бинарным ассоциациям, хотя большинство свойств относится и к бинарным, и к n-арным ассоциациям;

обобщение (Generalization) — это отношение специализации/обобщения, при котором объекты специализированного элемента (потомка — Child) можно подставить вместо объектов обобщенного элемента (родителя, предка — Parent). В случае обобщения классов прямой предок может именоваться суперклассом, а прямой потомок — подклассом;

реализация (Realization) — отношение между спецификацией и ее программной реализацией; указание на то, что поведение наследуется без структуры.

Мы перечислили четыре основных отношения. В UML также существуют их варианты: уточнение (Refinement), трассировка (Trace), включение (Include), расширение (Extend).

Диаграммы UML

Визуализация представления проектируемой системы с различных точек зрения в UML реализована посредством диаграмм - проекций системы. Диаграмма (Diagram) - это графическое представление множества элементов, которое изображается в виде связного графа с вершинами (сущностями) и ребрами (отношениями).

Чаще всего UML рассматривает систему с пяти взаимосвязанных точек зрения (рис. 6).

Представление с точки зрения прецедентов (Use case view) включает пользовательские истории, описывающие систему с точки зрения конечного пользователя, аналитика, тестера. Это представление не определяет структуру программного обеспечения, а существует для передачи общего представления о системе. В UML это отображается посредством диаграмм прецедентов (Use case diagram), динамический аспект представлен в диаграммах взаимодействий (Interaction diagram), состояний (Statechart diagram), активности (Activity diagram).

Представление с точки зрения дизайна (Design view) включает классы, интерфейсы и кооперации, которые формируют словарь задачи и ее решение. Данное представление в первую очередь осуществляет поддержку функциональных требований к системе, значение сервисов, которые система должна предоставить конечному пользователю. В UML это отображается посредством диаграмм классов (Class diagram) и объектов (Object diagram), динамический аспект отображается в диаграммах взаимодействий, состояний, активности.

Представление с точки зрения процессов (Process view) включает нити и процессы, которые формируют параллельную обработку и синхронизацию в системе. Данное представление в первую очередь относится к производительности, масштабируемости и пропускной способности системы. В UML статический и динамический аспекты отображаются теми же диаграммами, что и в Design view, но внимание акцентируется на активных классах, представляющих процессы и нити.

Представление с точки зрения реализации (Implementation view) включает компоненты и файлы, используемые при сборке системы. Подобное представление в первую очередь относится к управлению конфигурациями (Configuration management) релизов продукта. Статический аспект в UML отображен диаграммой компонентов (Component diagram), а динамический - диаграммами взаимодействий, состояний, активности.

Представление с точки зрения внедрения (Deployment view) включает узлы и их взаимодействие - они определяют аппаратную топологию, на которой выполняется программное обеспечение. Это представление в первую очередь относится к распространению, доставке, установке компонентов, из которых строится физическая система. Статический аспект в UML отображается диаграммой внедрения (Deployment diagram), а динамический - диаграммами взаимодействий, состояний, активности.

Ниже приведены определения и примеры диаграмм:

диаграмма классов (Class diagram) — структурная диаграмма, на которой показано множество классов, интерфейсов, коопераций и отношений между ними (рис. 7);

диаграмма объектов (Object diagram) — структурная диаграмма, на которой показано множество объектов и отношений между ними. Ее можно считать особым случаем диаграммы классов. Инструментам моделирования не нужно поддерживать отдельный формат для диаграмм объектов. На них изображены объекты, поэтому диаграмма классов, на которой нет классов, но есть принадлежащие им объекты, может считаться диаграммой объектов;

диаграмма прецедентов (Use case diagram) — диаграмма поведения, на которой показано множество прецедентов и актеров, а также отношений между ними (рис. 8);

диаграммы взаимодействий (Interaction diagram) :

- диаграмма последовательностей (Sequence diagram) — диаграмма поведения, на которой показано взаимодействие и подчеркнута временная последовательность событий (рис. 9),

- диаграмма кооперации (Collaboration diagram) — диаграмма поведения, на которой показано взаимодействие и подчеркнута структурная организация объектов, посылающих и принимающих сообщения (рис. 10);

диаграмма состояний (Statechart diagram) — диаграмма поведения, на которой показан автомат и подчеркнуто поведение объектов с точки зрения порядка получения событий (рис. 11);

диаграмма активности (Activity diagram) — диаграмма поведения, на которой показан автомат и подчеркнуты переходы потока управления от одной деятельности к другой (рис. 12);

диаграмма компонентов (Component diagram) — диаграмма, на которой изображена организация некоторого множества компонентов и зависимости между ними, — относится к статистическому виду системы (рис. 13);

диаграмма топологии системы (Deployment diagram) — структурная диаграмма, на которой показаны узлы и отношения между ними (рис. 14).

Продолжение следует.

Достоинства UML

  • 1. UML объектно-ориентированный язык, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных ОО-языках;
  • 2. UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;
  • 3. Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;
  • 4. Сокращение числа возможных ошибок таких как: несогласованные параметры подпрограмм, несогласованное изменение атрибутов;
  • 5. Повторное использование. Предполагается какой-либо вариант многократного использования уже существующего проекта или его части в новом проекте;
  • 6. UML расширяет и позволяет вводить собственные текстовые и графические стереотипы, что способствует его применению не только в сфере программной инженерии;
  • 7. UML получил широкое распространение и динамично развивается.

Недостатки UML

Несмотря на то, что UML достаточно широко распространённый и используемый стандарт, его часто критикуют из-за следующих недостатков:

  • 1. Избыточность языка. UML часто критикуется, как неоправданно большой и сложный. Он включает много избыточных или практически неиспользуемых диаграмм и конструкций. Чаще это можно услышать в отношении UML 2.0, чем UML 1.0, так как более новые ревизии включают больше компромиссов.
  • 2. Неточная семантика. Так как UML определён комбинацией себя (абстрактный синтаксис), OCL (языком описания ограничений -- формальной проверки правильности) и Английского (подробная семантика), то он лишен скованности присущей языкам, точно определённым техниками формального описания. В некоторых случаях абстрактный синтаксис UML, OCL и Английский противоречат друг другу, в других случаях они неполные. Неточность описания самого UML одинаково отражается на пользователях и поставщиках инструментов, приводя к несовместимости инструментов из-за уникального трактования спецификаций.
  • 3. Проблемы при изучении и внедрении. Вышеописанные проблемы делают проблематичным изучение и внедрение UML, особенно когда руководство насильно заставляет использовать UML инженеров при отсутствии у них предварительных навыков.
  • 4. Только код отражает код. Ещё одно мнение -- что важны рабочие системы, а не красивые модели. Как лаконично выразился Джек Ривс, «The code is the design» («Код и есть проект»). В соответствии с этим мнением, существует потребность в лучшем способе написания ПО; UML ценится при подходах, которые компилируют модели для генерирования исходного или выполнимого кода. Однако этого всё же может быть недостаточно, так как UML не имеет свойств полноты по Тьюрингу и любой сгенерированный код будет ограничен тем, что может разглядеть или предположить интерпретирующий UML инструмент.
  • 5. Кумулятивная нагрузка/Рассогласование нагрузки (Cumulative Impedance/Impedance mismatch). Рассогласование нагрузки -- термин из теории системного анализа для обозначения неспособности входа системы воспринять выход другой. Как в любой системе обозначений UML может представить одни системы более кратко и эффективно, чем другие. Таким образом, разработчик склоняется к решениям, которые более комфортно подходят к переплетению сильных сторон UML и языков программирования. Проблема становится более очевидной, если язык разработки не придерживается принципов ортодоксальной объектно-ориентированной доктрины (не старается соответствовать традиционным принципам ООП).
  • 6. Пытается быть всем для всех. UML -- это язык моделирования общего назначения, который пытается достигнуть совместимости со всеми возможными языками разработки. В контексте конкретного проекта, для достижения командой проектировщиков определённой цели, должны быть выбраны применимые возможности UML. Кроме того, пути ограничения области применения UML в конкретной области проходят через формализм, который не полностью сформулирован, и который сам является объектом критики.
  • 7. Усложнение методологии. Применение объектно-ориентированного подхода требует введения дополнительных способов представления информации о предметной области и методов ее анализа. язык UML включает более 100 различных условных обозначений. Для успешного использования подобного механизма требуется наличие определенного уровня квалификации у специалистов. Для небольших проектов более эффективным может оказаться применение классических методов разработки. Разработка проектов, для которых важнейшей задачей является описание предметной области, и для которых невозможно найти человека, понимающего эту предметную область в целом также требует использования традиционных подходов, в виду их большей доступности для неспециалистов.

Методология UML (англ. Unified Modeling Language - унифицированный язык моделирования) - язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это открытый стандарт, использующий графические обозначения для создания абстрактной моделисистемы, называемой UML-моделью. UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация. Использование UML не ограничивается моделированием программного обеспечения. Его также используют для моделирования бизнес-процессов, системного проектированияи отображения организационных структур.

Использование UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), объединение (aggregation) и поведение), и больше сконцентрироваться на проектировании и архитектуре.

Диаграммы В UML используются следующие виды диаграмм (для исключения неоднозначности приведены также обозначения на английском языке):

Диаграмма классов (Class diagram) - статическая структурная диаграмма, описывающая структуру системы, она демонстрирует классы системы, их атрибуты, методы и зависимости между классами. Существуют разные точки зрения на построение диаграмм классов в зависимости от целей их применения: концептуальная точка зрения - диаграмма классов описывает модель предметной области, в ней присутствуют только классы прикладных объектов; точка зрения спецификации - диаграмма классов применяется при проектировании информационных систем; точка зрения реализации - диаграмма классов содержит классы, используемые непосредственно в программном коде (при использовании объектно-ориентированных языков программирования).

Диаграмма компонентов (Component diagram) - статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами. В качестве физических компонент могут выступать файлы, библиотеки, модули, исполняемые файлы, пакеты и т. п.

Диаграмма композитной/составной структуры (Composite structure diagram) - статическая структурная диаграмма, демонстрирует внутреннюю структуру классов и, по возможности, взаимодействие элементов (частей) внутренней структуры класса. Подвидом диаграмм композитной структуры являются диаграммы кооперации (Collaboration diagram, введены в UML 2.0), которые показывают роли и взаимодействие классов в рамках кооперации. Кооперации удобны при моделировании шаблонов проектирования. Диаграммы композитной структуры могут использоваться совместно с диаграммами классов.

Диаграмма развёртывания (Deployment diagram) - служит для моделирования работающих узлов (аппаратных средств, англ. node) иартефактов, развёрнутых на них. В UML 2 на узлах разворачиваются артефакты (англ. artifact), в то время как в UML 1 на узлах разворачивались компоненты. Между артефактом и логическим элементом (компонентом), который он реализует, устанавливается зависимость манифестации.

Диаграмма объектов (Object diagram) - демонстрирует полный или частичный снимок моделируемой системы в заданный момент времени. На диаграмме объектов отображаются экземпляры классов (объекты) системы с указанием текущих значений их атрибутов и связей между объектами.

Диаграмма пакетов (Package diagram) - структурная диаграмма, основным содержанием которой являются пакеты и отношения между ними. Жёсткого разделения между разными структурными диаграммами не проводится, поэтому данное название предлагается исключительно для удобства и не имеет семантического значения (пакеты и диаграммы пакетов могут присутствовать на других структурных диаграммах). Диаграммы пакетов служат, в первую очередь, для организации элементов в группы по какому-либо признаку с целью упрощения структуры и организации работы с моделью системы.

Диаграмма деятельности (Activity diagram) - диаграмма, на которой показано разложение некоторой деятельности на её составные части. Под деятельностью (англ. activity) понимается спецификация исполняемого поведения в виде координированного последовательного и параллельного выполнения подчинённых элементов - вложенных видов деятельности и отдельных действий (англ. action), соединённых между собой потоками, которые идут от выходов одного узла к входам другого. Диаграммы деятельности используются при моделировании бизнес-процессов, технологических процессов, последовательных и параллельных вычислений. Аналогом диаграмм деятельности являются схемы алгоритмов по ГОСТ 19.701-90.

Диаграмма автомата (State Machine diagram, диаграмма конечного автомата, диаграмма состояний) - диаграмма, на которой представлен конечный автомат с простыми состояниями, переходами и композитными состояниями. Конечный автомат (англ. State machine) - спецификация последовательности состояний, через которые проходит объект или взаимодействие в ответ на события своей жизни, а также ответные действия объекта на эти события. Конечный автомат прикреплён к исходному элементу (классу, кооперации или методу) и служит для определения поведения его экземпляров.

Диаграмма вариантов использования (Use case diagram) - диаграмма, на которой отражены отношения, существующие между акторами и вариантами использования. Основная задача - представлять собой единое средство, дающее возможность заказчику, конечному пользователю и разработчику совместно обсуждать функциональность и поведение системы.

Диаграммы коммуникации и последовательности транзитивны, выражают взаимодействие, но показывают его различными способами и с достаточной степенью точности могут быть преобразованы одна в другую. Диаграмма коммуникации (Communication diagram, в UML 1.x - диаграмма кооперации, collaboration diagram) - диаграмма, на которой изображаются взаимодействия между частями композитной структуры или ролями кооперации. В отличие от диаграммы последовательности, на диаграмме коммуникации явно указываются отношения между элементами (объектами), а время как отдельное измерение не используется (применяются порядковые номера вызовов). Диаграмма последовательности (Sequence diagram) - диаграмма, на которой изображено упорядоченное во времени взаимодействие объектов. В частности, на ней изображаются участвующие во взаимодействии объекты и последовательность сообщений, которыми они обмениваются. Диаграмма сотрудничества - Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений. По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.

Диаграмма обзора взаимодействия (Interaction overview diagram) - разновидность диаграммы деятельности, включающая фрагменты диаграммы последовательности и конструкции потока управления. Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграммы последовательностей действий) и Collaboration diagram (диаграммы сотрудничества). Эти диаграммы позволяют с разных точек зрения рассмотреть взаимодействие объектов в создаваемой системе.

Диаграмма синхронизации (Timing diagram) - альтернативное представление диаграммы последовательности, явным образом показывающее изменения состояния на линии жизни с заданной шкалой времени. Может быть полезна в приложениях реального времени.

Помимо прочего, язык UML применяется для проектирования реляционных БД. Для этого используется небольшая часть языка (диаграммы классов), да и то не в полном объеме. С точки зрения проектирования реляционных БД модельные возможности не слишком отличаются от возможностей ER-диаграмм

Диаграммой классов в терминологии UML называется диаграмма, на которой показан набор классов (и некоторых других сущностей), не имеющих явного отношения к проектированию БД), а также связей между этими классами. Ограничения могут неформально задаваться на естественном языке или формулироваться на языке объектных ограничений OCL (Object Constraints Language).

Классом называется именованное описание совокупности объектов с общими атрибутами, операциями, связями и семантикой. Графически класс изображается в виде прямоугольника. Имя (текстовая строка), служит для идентификации класса.

Атрибутом класса называется именованное свойство класса, описывающее множество значений, которые могут принимать экземпляры этого свойства. Класс может иметь любое число атрибутов (в частности, не иметь ни одного атрибута).

Операцией класса называется именованная услуга, которую можно запросить у любого объекта этого класса. Операция - это абстракция того, что можно делать с объектом. Класс может содержать любое число операций (в частности, не содержать ни одной операции). Набор операций класса является общим для всех объектов данного класса.

В диаграмме классов могут участвовать связи трех разных категорий: зависимость (dependency), обобщение (generalization) и ассоциация (association).

Зависимостью называют связь по применению, когда изменение в спецификации одного класса может повлиять на поведение другого класса, использующего первый класс. Если интерфейс второго класса изменяется, это влияет на поведение объектов первого класса. Зависимость показывается прерывистой линией со стрелкой, направленной к классу, от которого имеется зависимость.

Связью-обобщением называется связь между общей сущностью, называемой суперклассом, или родителем, и более специализированной разновидностью этой сущности, называемой подклассом, или потомком. Обобщения иногда называют связями "is a", имея в виду, что класс-потомок является частным случаем класса-предка. Класс-потомок наследует все атрибуты и операции класса-предка, но в нем могут быть определены дополнительные атрибуты и операции.


Похожая информация.


Если перед вами стоит задача описать работу организации, у вас на руках огромное количество неупорядоченной информации. Вы в растерянности и не знаете, с какой стороны ко всему этому подступиться, советую следующую последовательность действий:

2. Определить какой тип модели бизнес процесса вам необходимо построить и выбрать список методологий, которые могут быть использованы при моделировании (используйте путеводитель, описанный ниже);

3. Сравнить методологии и нотации моделирования для вашего типа модели и выбрать подходящую для вас методологию:

  • Методологии моделирования бизнес процессов верхнего уровня и потоков данных;
  • Методологии моделирования потоков работ;
  • Методологии моделирования структуры информации.

4. Построить модель.

Путеводитель по нотациям и методологиям

Для того, чтобы не запутаться во всевозможных методологиях и нотациях, которые используются для построения самых распространенных моделей организации (модели управления — бизнес процессы на верхнем уровне, модели потоков работ и информационной модели — структура информации), предлагаю путеводитель и его дальнейшую детализацию.

Если хотя бы одно название методологии, нотации вам не знакомо, то читайте далее, если все знакомо, но интересно и хочется освежить память, то бегло просмотрите.

Классические методологии

Несмотря на свое различие, в основном связанное с названием диаграмм и видов используемых объектов, современные методологии описания бизнес процессов практически идентичны и представляют из себя незначительные изменения классических стандартов.

Унифицированный язык моделирования (UML) является стандартным инструментом для создания «чертежей» информационных систем (ИС). С помощью UML можно визуализировать, специфицировать, конструировать и документировать элементы этих систем.

UML пригоден для моделирования любых систем: от информационных систем масштаба предприятия до распределенных Web-приложений и даже встроенных систем реального времени. Это очень выразительный язык, позволяющий рассмотреть систему со всех точек зрения, имеющих отношение к ее разработке и последующему развертыванию. Несмотря на обилие выразительных возможностей, этот язык прост для понимания и использования. Изучение UML удобнее всего начинать с его концептуальной модели, которая включает в себя три основных элемента: базовые строительные блоки, правила, определяющие, как эти блоки могут сочетаться между собой, и некоторые общие механизмы языка.

UML является одной из составляющих процесса разработки ИС. Хотя UML не зависит от моделируемой реальности, лучше всего применять его, когда процесс моделирования основан на рассмотрении прецедентов использования, является итеративным и пошаговым, а сама система имеет четко выраженную архитектуру.

UML — это язык для визуализации, специфицирования, конструирования и документирования элементов программных систем. Язык состоит из словаря и правил, позволяющих комбинировать входящие в него слова и получать осмысленные конструкции. В языке моделированиясловарь и правила ориентированы на концептуальное и физическое представление системы. Язык моделирования, подобный UML, является стандартным средством для составления «чертежей» ИС.

При создании ИС любой сложности проводиться моделирование будущей системы, однако во многих случаях это делается неформально, без разработки какого-либо документа. Однако такой подход чреват неприятностями. Во-первых, обмен мнениями по поводу концептуальной модели возможен только тогда, когда все участники дискуссии говорят на одном языке. Во-вторых, нельзя получить представление об определенных аспектах информационных систем без модели, выходящей за границы текстового языка программирования. В-третьих, если автор кода никогда не воплощал в явной форме задуманные им модели, эта информация будет навсегда утрачена, если он сменит место работы. В лучшем случае ее можно будет лишь частично воссоздать исходя из реализации.

Использование UML позволяет решить третью проблему: явная модель облегчает общение.

Некоторые особенности системы лучше всего моделировать в виде текста, другие — графически. На самом деле во всех интересных системах существуют структуры, которые невозможно представить с помощью одного лишь языка программирования. UML — графический язык, что позволяет решить вторую из обозначенных проблем.

UML — это не просто набор графических символов. За каждым из них стоит хорошо определенная семантика. Это значит, что модель, написанная одним разработчиком, может быть однозначно интерпретирована другим — или даже инструментальной программой. Так решается первая из перечисленных выше проблем.

В данном контексте специфицирование означает построение точных, недвусмысленных и полных моделей. UML позволяет специфицировать все существенные решения, касающиеся анализа, проектирования и реализации, которые должны приниматься в процессе разработки и развертывания информационной системы.

UML является языком визуального проектирования, а модели, созданные с его помощью, могут быть непосредственно переведены на различные языки программирования ИС.

При разработке ИС, создаются и такие элементы, как:

  • требования к системе;
  • описание архитектуры;
  • проект;
  • исходный код;
  • проектные планы;
  • тесты;
  • прототипы;
  • версии, и др.

В зависимости от принятой методики разработки выполнение одних работ производится более формально, чем других. Упомянутые элементы — это не просто поставляемые составные части проекта; они необходимы для управления, для оценки результата, а также в качестве средства общения между членами коллектива во время разработки системы и после ее развертывания.

UML позволяет решить проблему документирования системной архитектуры и всех ее деталей, предлагает язык для формулирования требований к системе и определения тестов и, наконец, предоставляет средства для моделирования работ на этапе планирования проекта и управления версиями.

Где используется UML

Язык UML предназначен прежде всего для разработки информационных систем. Его использование особенно эффективно в следующих областях:

  • информационные системы масштаба предприятия;
  • банковские и финансовые услуги;
  • телекоммуникации;
  • транспорт;
  • оборонная промышленность, авиация и космонавтика;
  • розничная торговля;
  • медицинская электроника;
  • наука;
  • распределенные Web-системы.

Сфера применения UML не ограничивается моделированием программного обеспечения. Его выразительность позволяет моделировать, скажем, документооборот в юридических системах, структуру и функционирование системы обслуживания пациентов в больницах, осуществлять проектирование аппаратных средств.

Концептуальная модель UML

Для понимания UML необходимо усвоить его концептуальную модель, которая включает в себя три составные части: основные строительные блоки языка, правила их сочетания и некоторые общие для всего языка механизмы. Усвоив эти элементы, вы сумеете читать модели на UML и самостоятельно создавать их — начале, конечно, не очень сложные. По мере приобретения опыта в работе с языком вы научитесь пользоваться и более развитыми его возможностями.

Строительные блоки UML

Словарь языка UML включает три вида строительных блоков:

  • сущности;
  • отношения;
  • диаграммы.

Сущности — это абстракции, являющиеся основными элементами модели. Отношения связывают различные сущности; диаграммы группируют представляющие интерес совокупности сущностей.

В UML имеется четыре типа сущностей:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные.

Сущности являются основными объектно-ориентированными блоками языка. С их помощью можно создавать корректные модели. Существует семь разновидностей структурных сущностей:

  • Класс (Class)
  • Интерфейс (Interface)
  • Кооперация (Collaboration)
  • Прецедент (Use case)
  • Активным классом (Active class)
  • Компонент (Component)
  • Узел (Node)

Эти семь базовых элементов — классы, интерфейсы, кооперации, прецеденты, активные классы, компоненты и узлы — являются основными структурными сущностями, которые могут быть включены в модель UML. Существуют также разновидности этих сущностей: актеры, сигналы, утилиты (виды классов), процессы и нити (виды активных классов), приложения, документы, файлы, библиотеки, страницы и таблицы (виды компонентов).

Поведенческие сущности (Behavioral things) являются динамическими составляющими модели UML. Это глаголы языка: они описывают поведение модели во времени и пространстве. Существует всего два основных типа поведенческих сущностей:

  • Взаимодействие (Interaction)
  • Автомат (State machine)

Эти два элемента взаимодействия и автоматы являются основными поведенческими сущностями, входящими в модель UML. Семантически они часто бывают связаны с различными структурными элементами, в первую очередь — классами, кооперациями и объектами.

Группирующие сущности являются организующими частями модели UML. Это блоки, на которые можно разложить модель . Есть только одна первичная группирующая сущность, а именно пакет .

Пакеты — это основные группирующие сущности, с помощью которых можно организовать модель UML Существуют также вариации пакетов, например каркасы (Frameworks), модели и подсистемы.

Аннотационные сущности — пояснительные части модели UML. Это комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов — примечание (Note). Примечание — это просто символ для изображения комментариев или ограничений, присоединенных к элементу или группе элементов. Графически примечание изображается в виде прямоугольника с загнутым краем, содержащим текстовый или графический комментарий.

В языке UML определены четыре типа отношений:

  • зависимость;
  • ассоциация;
  • обобщение;
  • реализация.

Эти отношения являются основными связующими строительными блоками в UML и применяются для создания корректных моделей.
Четыре описанных элемента являются основными типами отношений, которые можно включать в модели UML Существуют также их вариации, например уточнение (Refinement), трассировка (Trace), включение и расширение (для зависимостей).

Диаграмма в UML — это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами (сущностями) и ребрами (отношениями). Диаграммы рисуют для визуализации системы с разных точек зрения. Диаграмма в некотором смысле одна из проекций системы. Как правило, за исключением наиболее тривиальных случаев, диаграммы дают свернутое представление элементов, из которых составлена система. Один и тот же элемент может присутствовать во всех диаграммах, или только в нескольких (самый распространенный вариант), или не присутствовать ни в одной (очень редко). Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру информационной системы. Таким образом, в UML выделяют девять типов диаграмм:

  • диаграммы классов;
  • диаграммы объектов;
  • диаграммы прецедентов;
  • диаграммы последовательностей;
  • диаграммы кооперации;
  • диаграммы состояний;
  • диаграммы действий;
  • диаграммы компонентов;
  • диаграммы развертывания.

Здесь приведен неполный список диаграмм, применяемых в UML. Инструментальные средства позволяют генерировать и другие диаграммы, но девять перечисленных встречаются на практике чаще всего.

Правила языка UML

Строительные блоки UML нельзя произвольно объединять друг с другом. Как и любой другой язык, UML характеризуется набором правил, определяющих, как должна выглядеть хорошо оформленная модель, то есть семантически самосогласованная и находящаяся в гармонии со всеми моделями, которые с нею связаны.

В языке UML имеются семантические правила, позволяющие корректно и однозначно определять:

  • имена , которые можно давать сущностям, отношениям и диаграммам;
  • область действия (контекст, в котором имя имеет некоторое значение);
  • видимость (когда имена видимы и могут использоваться другими элементами);
  • целостность (как элементы должны правильно и согласованно соотноситься друг с другом);
  • выполнение {что значит выполнить или имитировать некоторую динамическую модель).

Модели, создаваемые в процессе разработки информационных систем, эволюционируют со временем и могут неоднозначно рассматриваться разными участниками проекта в разное время. По этой причине создаются не только хорошо оформленные модели, но и такие, которые:

  • содержат скрытые элементы (ряд элементов не показывают, чтобы упростить восприятие);
  • неполные (отдельные элементы пропущены);
  • несогласованные (целостность модели не гарантируется).

Появление не слишком хорошо оформленных моделей неизбежно в процессе разработки, пока не все детали системы прояснились в полной мере. Правила языка UML побуждают — хотя не требуют — в ходе работы над моделью решать наиболее важные вопросы анализа, проектирования и реализации, в результате чего модель со временем становится хорошо оформленной.

Общие механизмы языка UML

Строительство упрощается и ведется более эффективно, если придерживаться некоторых соглашений. Следуя определенным архитектурным образцам, можно оформить здание в викторианском или французском стиле. Тот же принцип применим и в отношении UML. Работу с этим языком существенно облегчает последовательное использование общих механизмов, перечисленных ниже:

  • спецификации (Specifications);
  • дополнения (Adornments);
  • принятые деления (Common divisions);
  • механизмы расширения (Extensibility mechanisms).

Архитектура

Для визуализации, специфицирования, конструирования и документирования информационных систем необходимо рассматривать их с различных точек зрения. Все, кто имеет отношение к проекту, — конечные пользователи, аналитики, разработчики, системные интеграторы, тестировщики, технические писатели и менеджеры проектов — преследуют собственные интересы, и каждый смотрит на создаваемую систему по-разному в различные моменты ее жизни. Системная архитектура является, пожалуй, наиболее важным элементом, который используется для управления всевозможными точками зрения и тем самым способствует итеративной и инкрементной разработке системы на всем протяжении ее жизненного цикла.

Архитектура — это совокупность существенных решений касательно:

  • организации программной системы;
  • выбора структурных элементов, составляющих систему, и их интерфейсов;
  • поведения этих элементов, специфицированного в кооперациях с другими элементами;
  • составления из этих структурных и поведенческих элементов все более и более крупных подсистем;
  • архитектурного стиля, направляющего и определяющего всю организацию системы: статические и динамические элементы, их интерфейсы, кооперации и способ их объединения.

Архитектура программной системы охватывает не только се структурные и поведенческие аспекты, по и использование, функциональность, производительность, гибкость, возможности повторного применения, полноту, экономические и технологические ограничения и компромиссы, а также эстетические вопросы.

Вид с точки зрения прецедентов (Use case view) охватывает прецеденты, которые описывают поведение системы, наблюдаемое конечными пользователями, аналитиками и тестировщиками. Этот вид специфицирует не истинную организацию программной системы, а те движущие силы, от которых зависит формирование системной архитектуры. В языке UML статические аспекты этого вида передаются диаграммами прецедентов, а динамические — диаграммами взаимодействия, состояний и действий.

Вид с точки зрения проектирования (Design view) охватывает классы, интерфейсы и кооперации, формирующие словарь задачи и се решения. Этот вид поддерживает прежде всего функциональные требования, предъявляемые к системе, то есть те услуги, которые она должна предоставлять конечным пользователям. С помощью языка UML статические аспекты этого вида можно передавать диаграммами классов и объектов, а динамические — диаграммами взаимодействия, состояний и действий.

Вид с точки зрения процессов (Process view) охватывает нити и процессы, формирующие механизмы параллелизма и синхронизации в системе. Этот вид описывает главным образом производительность, масштабируемость и пропускную способность системы. В UML его статические и динамические аспекты визуализируются теми же диаграммами, что и для вида с точки зрения проектирования, но особое внимание при этом уделяется активным классам, которые представляют соответствующие нити и процессы.

Вид с точки зрения реализации (Implementation view) охватывает компоненты и файлы, используемые для сборки и выпуска конечного программного продукта. Этот вид предназначен в первую очередь для управления конфигурацией версий системы, составляемых из независимых (до некоторой степени) компонентов и файлов, которые могут по-разному объединяться между собой. В языке UML статические аспекты этого вида передают с помощью диаграмм компонентов, а динамические — с помощью диаграмм взаимодействия, состояний и действий.

Вид с точки зрения развертывания (Deployment view) охватывает узлы, формирующие топологию аппаратных средств системы, на которой она выполняется. В первую очередь он связан с распределением, поставкой и установкой частей, составляющих физическую систему. Его статические аспекты описываются диаграммами развертывания, а динамические -диаграммами взаимодействия, состояний и действий.

Каждый из перечисленных видов может считаться вполне самостоятельным, так что лица, имеющие отношение к разработке системы, могут сосредоточиться на изучении только тех аспектов архитектуры, которые непосредственно их касаются. Но нельзя забывать о том, что эти виды взаимодействуют друг с другом. Например, узлы вида с точки зрения развертывания содержат компоненты, описанные для вида с точки зрения реализации, а те, в свою очередь, представляют собой физическое воплощение классов, интерфейсов, коопераций и активных классов из видов с точки зрения проектирования и процессов. UML позволяет отобразить каждый из пяти перечисленных видов и их взаимодействия.

Похожие публикации